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Abstract

The Air Force Institute of Technology (AFIT) has been involved in developing Kalman

filter trackers for airborne targets for the last 14 years. The goal of this particular thesis was to

track a ballistic missile in the boost phase at ranges up to 2000 kin, in order to control a high

energy laser weapon designed to destroy the target. The filter developed combined an existing

"FLIR" filter, which estimated location of the plume intensity centroid based on measurements

from a forward looking infrared sensor (FLIR), and an existing "center-of-mass" filter, which

estimated the offset between the plume and missile center-of-mass based on mea-,rements from

low-energy laser reflections. In addition, the new filter modeled the oscillation of the rocket

plume with respect to the missile hardbody, known as the "pogo" affect, in tho hopes of improving

overall tracking performance. Filter performance is analyzed through use of Monte Carlo

simulation software developed at AFIT.

This thesis also performed observability tests on various filter configurations in order to

gain insight into observability problems identified during earlier research. Observability of states

is measured through the use of both stochastic observability testing and Monte Carlo analysis of

the filter models using the Multimode Simulation for Optimal Filter Evaluation (MSOFE)

software.

xvii



KALMAN FILTER TRACKING OF A BALLISTIC MISSILE USING

FORWARD-LOOKING INFRARED AND DOPPLER RETURN

MEASUREMENTS

1. Introduction

The radical changes in the geopolitical complexion of the world have triggered

corresponding drastic adjustments to the defensive posture of the Unites States military complex.

Despite major cutbacks, the US Government continues its commitment to develop a national

ballistic missile defense system under the Strategic Defense Initiative (SDI). One of those

technologically challenging programs within SDI is the research to design a space-based

contingent that can destroy ballistic missiles immediately after launch while they are still in the

boost phase.

There are numerous technologies that must be employeI to solve the problem of acquiring,

tracking, and pointing a high energy laser (HEL) weapon at a ballistic missile. The major

technologies exploited in the solution to this problem are the Kalman filter, the laser, and the

forward looking infrared sensor (FLIR). Although all three technologies matured independently,

they must be combined in a single system to solve this problem.

One of the SDI systems currently in development at the Phillips TaLoratory, Kirtland Air

Force Base, New Mexico, is a space-based system that contains a defensive weapon, the HET,, and

all associated sensors and hardware necessary for tracking and pointing the HEL. The main
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Figure 1.1 Ballistic Missile Tracking Scenario

objective, shown pictorially in Figure 1.1, is to acquire a launched missile, track the missile

precisely, and point and fire the laser. Figure 1.1 depicts a simplified relationship between the

FLIR and the target. The FLIR plane shown is associated with tracker. The tracker centers the

line-of-sight (LOS) vector of the FLIR plane on the target. It is eventually desired to point the

LOS vector directly at the missile hardbody, since this is a shared optics device such that the laser

will fire along that LOS. Since tracking and firing must take place rapidly, at extremely long

distances, and through the atmosphere, this objective is quite challenging to achieve. A number

of major difficulties that must be overcome in this tracking problem are considered and

implemented in this thesis research. Atmospheric disturbances cause the image of the rocket

plume image to jitter on the FLIR plane. The atmosphere will also attenuate and jitter both the
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low energy laser (LEL) sensor (to be discussed subsequently) and the HEL, but to different

extents. Bending of the space platform itself will also cause errors in pointing accuracy. The

original tracker incorporated measurements from only the FU.R; however, it obtains information

only on the high intensity infrared image of the plume. It is essential to locate the missile

hardbody versus its plume centroid for firing ,h. HE!.. A phenomenon known as pogo causes the

plume to oscillate with respect to the missile dnd makes estimation of the missile center-of-mass

location difficult (if not impossible) based on FLIR data alone. For this reason, measurements

from the LEL were incorporated to gain direct measurement information on the hardbody. Once

FLIR measurements allow estimated motion of the plume center-of-intensity position and target

velocity, the LEL is swept along the estimated velocity vector (as seen in the FLIR image plane),

starting from the estimated center-of-intensity, in anticipation of intercepting the missile hardbody.

Using reflected information from the LEL, the locations of the plume/hardbody interface and the

hard body-nose/space-background interface would yield an estimate of the hardbody center-of-mass

location. It was determiined that use of speckle reflectance information from the LEL did not

allow clear distinction of the hardbody/plume interface and therefore resulted in biased

calculations of tie hardbody center-of-mass. To alleviate this difficulty, a method to utilize the

doppler shift frequencies in tho return was implemented to define thf, interface clearly.

These anomalies must be considered in design of a tracker and compensated, for such that

the HEL beam can be maintained on a spot on the missile at a 2000 Km range during the firing

sequence. To complicate matters further, the laser is not capable of destroying the missile

instantaneously (like a kinetic kill weapon) but must be maintained within a small area on the

target over a relatively long period of time [4]. This research specifically addresses the difficulties
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with optimally combining measurements from the FUR and LEL in order to locate dhe missile

center-of-mass in the presence of plume pogo.

1.1 Background

The Phillips Laboratory (formerly the Air Force Weapons Lar-ratory or AFWL), at

Kirtland Air Force Base, New Mexico, has been sponsoring research for the past 14 years at the

Air Force Institute of Technology (AFIT) in the use of directed energy weapons to destroy

airborne targets [41]. This section provides a general overview of the sensor/tracker system in

development by this research.

The primary sensor being used to track the targets is a 300 x 500 picture element (pixel)

array FLIR sensor. The FLIR is a passive sensor which detects the infrared radiation emitted by

the missile plume. Each pixel in the array discerns infrared energy through an angle of 15

microradians in two orthogonal directions (azimuth and elevation) [40]. A smaller 8 x 8 pixel

array is utilized as the tracking window, which will be referred to as the field of view (FOV) in

this thesis [14,40]. The tracker has been found to be accurate enough to maintain the target within

the smaller FOV, and the smaller number of pixels allows for less computational loading and time

lag than required for a larger number of pixels.

Excitations from detectors in the 8 x 8 FOV are fed to an enhanced image correlation

algorithm (presented later in Figure 1.4). This algorithm compares the current raw FLIR data

frame with a template which estimates the plume's intensity function [41]. The correlation then

determines the optimal offsets in two orthogonal directions (defining the 17LIR plane) that yield

maximum correlation with the template. These offsets are the "pseudo-measurements" for a linear
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Kalman filter. The linear Kalman filter updates position estimates of the plume centroid location

based on the pseudo-measurements and propagates an estimate of the offset (from the current

center of the FOV) of the centroid at the next update frame. A controller applies the appropriate

adjustments to the FLIR plane in order to kep tbe centroid in the center of the FOV, i.e., to point

the LOS vector of Figure 1.1 at the predicted location of the target one sample period later.

The previous three theses [8,9,14] incorporated use of a second sensor, a low energy laser,

to obtain measurements of the location of the hardbody itself. The LEL is swept along the

estimated target velocIty vector in the FLIR image plane, relative to the centroid estimate, in order

to obtain the center-of-mass location. Prior research incorporated the LEL measurements into the

tracking algorithm using two different methods. Either a single linear Kalnan filter (with

decoupled models for incorporating the two types of measurements) accepted measurements from

both the FLIR and the LEL, or two independent Kalman filters utilized the measurements

separately. In either case, two independent estimates of intensity centroid location and the offset

of the center-of-mass from that location were combined outside the filter to determine where to

point the HEL.

This research incorporates both types of measurements into a single Kalman filter that

optimally combines the measurements to estimate the location of the missile center-of-mass

directly. Unlike previous research, there will be no purposeful attempt to decouple the two types

of measurements, but to process them with a full accounting for physical interrelationships.
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.1.2 Summary of Previous Research

The Air Force Institute of Technology has been engaged in supporting the Phlliips

laboratory in the development of ballistic missile trackers since 1978 [31]. Sixteen theses and a

number of other documents report the ongoing developments at AFIT. Each thesis contains a

synopsis of previous woik. This section provides a general overview of the previous ballistic

missile tracker research completed at AFIT. The information included in this section is essentially

a replication of the version from Herrera's thesis [14] with minor alterations and comments added

to include his own contributions.

Research in this area was initiated by Mercier [31] in 1978, who compared extended

Kalman filter (EKF) performance to that of the AFWL correlation tracker under identical

conditious. An eight-state truth model was developed for simulation purposes, consisting of two

target position states and six atmospheric jitter states. The position states defined the target

location in each of two FUR plane coordinate directions (azimuth and elevation), by accurately

portraying target trajectories in three-dimensional space and projecting onto the FLIR plane. The

atmospheric jitter was modeled by a third order shaping filter driven by white noise for each FLIR

plane axis, as provided by The Analytic Sciences Corporation (TASC) [21]; three states defined

the atmospheric distortion in each of the two FLIR plane coordinate directions. The Kalman filter

dynamics model consisted of four states: two states representing target position, and two

representing the atmospheric jitter (based on reduced order models, versus the six states of the

truth model). In both the truth model and filter dynamics model, the position states and

atmospheric jitter states were defined in each of the two FUR plane coordinate directions. In the

filter, the position and jitter states were each modeled as a first-order, zero-mean, Gauss-Markov
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process. The FLIR provided sampled data measurements to the filter at a 30 Hertz (Hz) rate. The

FLIR measurement noises corrupting each pixel output due to background clutter effects and

internal FUR noises were modeled in the filter as both temporally and spatially uncorrelated. The

target was considered as a point source of light (i.e., a long range target) having benign dynamics.

The corresponding Airy disc on the FLIR image plane was modeled as a bivariate Gaussian

distribution with circular equal intensity contours. The conventional correlation tracker and the

extended Kalman filter were compared across three different signal-to-noise ratios (SNR), using

a ten-run Monte Carlo analysis to obtain the tracker error statistics. The results of the comparison

are shown in Table 1.1 for a Gaussian intensity function dispersion, a., equal to one pixel. (For

a Gaussian intensity function dispersion equal to one pixel, most of the useful information is

contained in an area cf about five pixels square.)

While the correlation tracker showed dramatic performance degradation as the $NR was

decreased, the Kalman filter showed only a minor change in its performance at the lowest SNR

tested. The extended Kalman filter was shown to be superior to the correlation tracker by an

order of magnitude in the root mean square (rms) tracking error, provided the models incorporated

into the filter were a valid depiction of the tracking scenario. This success motiveted a follow-on

thesis to improve filter modeling and thereby to enhance the performance.

The research accomplished by Harnly and Jenson [13,25] investigated modeling

improvements in the filter and tested more dynamic target simulations. A comparison was made

between a new six-state fiter and a new eight-state filter. The six-state filter aynamics target

model included the four previous states as well as two velocity states in the FLIR plane

coordinates (azimuth and elevation); the dynamics model of the eight-state filter included two
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Table 1.1 Kalman Filter and Correlation Tracker Statistics Comparison

Signal-to Correlation Tracker Extended Kalman Filter
Noise Ratio

Mean Error la Mean Error 1a

20 7.0 8.0 0.0 0.2

10 8.0 10.0 0.0 0.2

1 15.0 30.0 0.0 0.8

acceleration states in the FLIR coordinates as well. The acceleration was modeled as Brownian

motion (BM) (d = w, where w is a zero-mean white Gaussian noise). The filter was also designed

to perform residual monitoring, which allowed the filter to react adaptively, and maintain track,

by quickly increasing the values in the filter-computed state covariance matrix P, which in turn

increased the filter gain K. A recommendation was also made to examine increasing the FOV

during target jinking maneuvers to avoid losing lock. The constant-intensity contours of the target

were modeled as elliptical patterns as opposed to the earlier circular equal-intensity contours in

order to simulate closer range targets. The major axis of the target FLIR image was aligned with

the estimated velocity vector. A number of different target trajectories were tested against the six-

state and eight-state filters, and while the six-state filter performed well during moderate jinking

maneuvers, the eight-state filter performed better while tracking high-g target maneuvers.

Other approaches to modeling the dynamics of the target in the filter were considered by

Flynn [11]. He used a Brownian motion (BM) acceleration target dynamics model [13] and a

constant turn-rate (CTR) dynamics model. The CTR model portrayed the target behavior by

modeling the acceleration as that associated with CTR dynamics. Concatenating sucb constant
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turn-rate segments together provides an accurate portrayal of manned target evasive maneuver

trajectories. Additionally, a Bayesian multiple model adaptive filter (MMAF) was developed

using the BM dynamics model. A MMAF (Figure 1.2) consists of a bank of K independent

Kalman filters, each of which is tuned to a specified target dynamics characteristic or parameter

(a,, a2,...a,, in Figure 1.2). The time histories of the residuals (rx(t) in Figure 1.2) of these K

Kalman filters are processed to compute the conditional probability (pA(t) in Figure 1.2) that each

discrete parameter value is "correct." The residuals of the Kalman filter, based upon the "correct"

model, are expected to be consistently smaller (relative to the filter's internally computed residual

rms values) than the residuals of the other mismatched filters (i.e., based upon "incorrect" models)

[11]. If that is true, then the MMAF algorithm appropriately weights that particular Kalman filter

more heavily than the other Kalman filters. These values are used as weighting coefficients to

produce a probability-weighted average of the elemental filter outputs [111]. Therefore, the state

estimate (.,,•/t,) in Figure 1.2) is actually the probabilistically weighted average of the state

estimates generated by each of the K separate Kalman filters (it(t) in Figure 1.2). Testing of the

three filter models was conducted for three different flight trajectories which included 2-g, 10-g,

and 20-g pull-up maneuvers. Unfortunately, the residuals of the K Kalman filter did not differ

from each other enough to perform the weighting function properly, and MMAF did not track

well. The BM and CTR filters both performed equally well at 2-g's. The CTR filter was found

to be substantially better than the BM filter for 10-g and 20-g pull-up maneuvers.

Mercit,- had assumed that the filter had a priori knowledge of the target shape and

intensity profile. Singletery [42] improved the realism in the target model by developing a model

in the FLIR plane which included multiple hot spots. However, he returned to the case of very

benign targets. The filter did not assume a priori knowledge of the target size, shape, or location.
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Figure 1.2 Multiple Model Adaptive Filter

A new data processing scheme (Figure 1.3) was developed which included the use of the Fast

Fourier Transform (FFT) and the Inverse Fast Fourier Transform (IFT), each of which can be

produced with a lens if optical processing is used. The plan included two data paths for

processing the intensity measurements z(t). On the first path, the 8 x 8 array of intensity

measurements from the FUR are arranged into a 64-dimensional measurement vector. This

measurement vector is applied to the extended Kalman filter (as in prior work). The purpose of

the second path is to provide centered target shape functions to be time-averaged with previous

centered shape functions in order to generate the estimated target template (h in Figure 1.3) and

partial derivatives of it with respect to the states (H in Figure 1.3), as needed by the extended
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Kalman filter. This invokes the shifting theorem of Fourier transforms. The shift theorem states

that a translation of an image in the spatial domain results in a linear phase shift in the spatial

frequency domain. To negate the translational effects of an uncentered target image in the spatial

domain, the Fourier transform of the translated image is multiplied by the complex conjugate of

the desired linear phase shift [42]. The extended Kalman filter model, in path one, which was

developed by Mercier [31], was used to provide the optimal estimate of the required linear

translation. The filter state estimates are used to develop the complex conjugate of the linear

phase shift and provide the centered measurement functions. Before the IFFI" is taken, the

x _X d(tl )+X4 (ti+)
y "y a~t,) +j7 

0(t:) -

8 X8 Pad [F~ ~ Negating Exponential
input with L Phase SmoothlingF
Aray Zeroes jShift of Data T

h z h (t,'), t] J]_ _

H [ (ti ), t, I Forward
Backward
Differencej

Results of Measurement Update Dfenc

z~~)____ Kalman Filterd To_-____

Results of Contr oll T
Propagation Yyd t: 1)

Figure 1.3 Data Processing Scheme using FF1 and IFFT
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resulting pattern is exponentially smoothed to yield an approximation to averaging the result with

previously centered frames of data, to minimize the effect of measurement noise. The result is

a centered pattern with noise effects substantially reduced. Following the application of the IPFT

to form the nonlinear function of intensity measurements (h of Figure 1.3), the spatial derivative

is used to determine the linearized function of intensity measurements (H of Figure 1,3). These

are both used by the Kalman filter in processing the next sampled measurement [42]. The results

of this data processing scheme were inconclusive due to filter divergence problems. Despite the

problems encountered with the filter, the concept was considered to have filter performance

potential.

Rogers [41] continued the work of developing a Kalman filter tracker which could handle

inultiple-hotspots with no a priori information as to the size, shape. intensity, or location of the

target. Moreover, he continued the application to benign target motion, as Singletary [42] had

done before, in order to concentrate on the feasibility of adaptively identifying the target shape.

Using digital signal processing on the FLIR data (as described above) to identify the target shape,

the filter uses the information to estimate target offset from the center of the FOV, which in turn

drives a controller to center the image in the FLIR plane. Algorithm improvements included

replacing the Forward-Backward Difference block of Figure 1.3 with a partial differentiation

operation accomplished as a simple multiplication before the IFFT block.

Rogers also considered an alternative design that used the target image h (as generated

in Figure 1.3) as a template for an enhanced correlator, as shown in Figure 1.4. The position

offsets produced as outputs from the correlator were then used as "pseudo-measurement" inputs

to a linear Kalman filter. The improved correlation algorithm of Figure 1.4 compares the FU IR
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image to an estimated template instead of the previous image, as is done in the standard correlator.

This tracking concept is thus a hybrid of correlation tracking and Kalnan filtering [41]. Its

performance was compared to the results of earlier extended Kalman WUters that used the raw

FLIR data as measurements [13]. Although the extended Kalman filter performed well without

a priori knowledlge of the shape and location of the intensity centroid, the improved correlator

useA with the linear Kalman filter outperformed the extended Kalman filter while providing

reduc-A computational loading.

Template Generation

S Updated State Estimate
I +)

L8 x8 Negating Exponential
Input Phase Smoothing Template
Array Shift of Data

Image A [^One Sample
Correlation h [x (t[), ti ] Period Image

(IFF') _[ Storage
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Figure 1.4 Linear Kalman Filter/Enhanced Correlator Algorithm
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Millner [33] and Kozemchak (16] tested an extended Kalman filter and the linear Kalman

filter/enhanced correlation algorithm against close range, highly maneuverable targets. The linear

four-state filter uoed in the previous research was replaced by an eight-state filter consisting of

position, velocity, acceleration, and atmospheric jitter states in the two coordinates of the FLIR

plane (azimuth and elevation). Two target dynamics models were also developed. The target was

first modeled as a first-order Gauss-Markov acceleration process, and secondly with a constant

turn-rate model. Both filters performed well without a priori knowledge of the target size, shape,

and location, using the FFT data processing method for identifying the target shape function

[41,42]. However, at target maneuvers approaching 5-g's, the filter performance degraded

considerably. It was noted that the tracking was substantially better when the Kalman filtei

dynamics model closely matched the target trajectory.

The Bayesian MMAF technique [111 was reinvestigated by Suizu [45] based on the

recommendations of the previous work. The MMAF (Figure 1.2) consisted of two elemental

Kalman filters. One elemental filter was tuned for benign target maneuvers and obtained sampled

measurement information from an 8 x 8 pixel FOV in the FLIR plane. A second filter was tuned

for dynamic maneuveis and obtained sampled measurement information from a 24 x 24 pixel FOV

in the FLIR plane. The technique allowed the MMAF to maintain track on benign target

trajectories up to 20-g's at a distance of 20 kilometers. The MMAF was configured for both the

linear Kalman filter/enhanced correlation algorithm [41] and the extended Kalmari filter. Both

filtering schemes exhibited comparable rns tracking performance results, with the correlator/linean,

Kalman filter having smaller mean errors and larger standard deviations than the extended Kalman

filter, as seen in earlier work of Rogers [41]. The state rms tracking error was on the order of 0.2

to 0.4 pixels (one pixel being equivalent to 20 pirad on a side).
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The potential of the MMAF technique with the FFT processing method was continued by

Loving [19]. A third filter was added to the bank of filters, tuned for intermediate target

maneuvers and obtaining sampled measurement information from the 8 x 8 FOV in the FUR

plane. This MMAF showed significant performance advantages over all the previous filters.

Additionally, a Maximum A Posterori (MAP) algorithm was developed and compared with the

Bayesian MMAF. The MAP algorithm differs from the Bayesian MMAF of Figure 1.2 in that

the MAP algorithm uses the residuals of the separate filters to select the one filter with the highest

probabilistic validity, while the Bayesian MMAF uses a probability-weighted average of all filters

in the bank. The Bayesian and the MAP techniques produced similar results and delivered

performance that surpassed previous filters.

Netzer [37] expanded the study of the MMAF algorithm. He investigated a steady-state

bias error that resulted when tracking a target exhibiting a high-g constant turn-rate maneuver.

A major cause of this bias is the MMAF mistuning the x-direction (azimuth) while maintaining

lock on the highly dynamic y-direction (elevation) transient for a trajectory starting horizontally

and then pulling up with a high-g maneuver. This motivates the concept of individual x- and y-

channel target-motion models (and tuning parameters) in the elemental filters in the MMAF, which

would allow adaptive filtering for maneuvers in the x- and y-channels independently [37]. The

size of the FOV was also investigated. When a target zame to within five kilometers of the FLIR

platform, the 8 x 8 FOV was saturated with the intensity centroid image, resulting in a loss of

track. This analysis motivates a changing FOV to maintain lock for targets and also warrants the

possibility of adding another Kalman filter which is tuned for extremely harsh maneuvers at close

ranges. A study of the aspect ratio (AR) associated with target's intensity centroid was also

accomplished to identify filter tracking characteristics for various target image functions [37].
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This study used "greyscale plots" to support the a.,alysis. A greyscale plot is a pictorial display

of an image in which shading of the image is used to indicate similar parameters. In this case,

the plot indicates regions of varying levels of the intensity of the filter-reconstructed target image

in a 24 x 24 pixel FOV. Four different AR values of 0.2, 0.5, 5, and 10 were compared to the

nominal AR of 1. The results showed that tracking was slightly impaired for images with AR as

high as 5. The reduced performance is primarily along the semi-major axis of an elliptically

modeled intensity centroid. Additionally, a target-decoy experiment was conducted in which a

high density decoy was also located in the FOV with the target. Since the decoy was modeled

with different dynamics not given to the filter, it was hoped that the filter would reject the decoy.

This was not the case; the filter locked onto the hotter decoy image. This indicates that the

inability of the current filter algorithm to reject this type of bright hotspot requires isolating the

target image in a small FOV or some other concept to ensure tracking of the desired target.

The previous research efforts [19,37,45] used Gauss-Markov acceleration models in the

development of the MMAF. Tobin [47] implemented the CTR dynamics model in another

MMAF. His results showed that the Gauss-Markov MMAF exhibited smaller bias errors while

the CTR MMAF gave smaller steady state standard deviation errors; both filters had comparable

rms errors. Motivated by earlier research [37], he also developed an 8 x 24 pixel FOV for both

the x- and y-directions of the FLIR image plane to be used with filters designed to anticipate harsh

target accelerations in a specific direction (along which the longer side of the FOV would be

oriented). The results showed that the filter maintained lock on a target during a highly dynamic

maneuver in the y-direction while maintaining substantially better steady state bias performance

in the benign x-direction.
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Leeney [17] expanded the previously used Gauss-Markov truth model by incorporating

bending vibrational states. The elemental filters in the MMAF were not modeled with this

information through explicit state variables, but performed well up to a 10-g maneuver. A

performance investigation was also conducted as to the effects of increasing the measurement

update rate from the previously used 30 Hz to 50 Hz. The sampling rate of 50 Hz showed a

minor performance improvement, but also increased the computational loading because of the

higher rate. A preliminary study was also done on replacing the 8 x 24 pixel FOV in the x- and

y-directions [47] on the FUR plane with a single 8 x 24 pixel FOV, which is also known as the

rotating rectangular-field-of-view (RRFOV). The idea was to align the long side of the rectangular

FOV with an estimate of the acceleration vector. The higher precision velocity estimate was

actually used instead of the noisier acceleration estimate, and it was assumed that the acceleration

direction would be essentially orthogonal to the cwT'ent velocity vector direction. Additionally,

the five elemental Kalman filtqrs in the MMAF bank would be reduced to four by using this FOV

rotation scheme. The results were not conclusive, but the insight provided motivation to continue

the study.

The RRFOV research was continued by Norton [38]. He discovei-1 ýd ihat the appropriate

choice of the filter dynamics driving noise strength Q dictated the filter's response to a high-g

jinking maneuver, and that the size of the FOV could be ieduced to an 8 x 8 pixel rotating FOV,

also known as the rotating square field of view (RSFOV). His investigation showed that a non-

rotating square FOV could provide good performance, but that the dynamics noise strength Q

matrix value must be large in the elements corresponding to the direction of the acceleration

vector. A mathematical matrix transformation was deteloped which "rotated" the Q matrix to

keep the larger values aligned with the acceleration vector. A study of both the rotating FOV and
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rotating the Q matrix provided advantages and disadvantages for each method. Both methods are

affected by the tuning parameters used to represent the rms level of acceleration of the target,

which also contributes to error biases. The rotating FOV improves the x-direction (azimuth)

estimation for dominant y-direction (elevation) dynamics from previous MMAF algorithms (on

pull-up maneuvers), but does not improve y-direction estimation for dominant y-direction

dynamics. Rotating the Q matrix adaptively improves estimation of both x- and y-directians and

improves the jink maneuver error transients, but is dependent on the orthogonality of the velocity

and acceleration vectors and proper initial tuning parameters. The conclusion was that both

methods employed together provide the ability to adjust filter characteristics to differentiate

between harsh and benign dynamics in any orientation of target acceleration (rotating Q) while

at the same time maintaining appropriate view resolution in the directions of both benign and

harsh dynamics (rotating FOV). Therefore, the combination allows for tracking highly

maneuvering targets without sacrificing the resolution provided by the smaller RSFOV [38].

The research up to this point was primarily directed towards tracking aircraft and missiles

from a ground-based FLIR plane. Rizzo [40] initiated research on a space-based platform which

could track targets using the same filtering techniques. Since the linear Kalman filter/enhanced

correlator algorithm had proven to be computationally more efficient than the extended Kalman

filter, it was chosen as the system filter. The plume "pogo" (oscillation) phenomenon of a missile

in the boost phase of flight was modeled in the truth model and in one of two filters used for the

analysis. The pogo was modeled as a second-order Gauss-Markov process, and applied in the

direction of the missile velocity vector. The plan was to go adaptive on the pogo states using the

MMAF algorithm, treating the pogo amplitude and oscillation frequency as uncertain parameters.
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Although the elemental filters were developed, no MMAF performance was accomplished, due

to elemental filter performance difficulties.

Three rotation schemes were also developed and tested. The first scheme, referred to as

the rotating field-of-view (RFOV), involved using the 8 x 8 FOV filter and aligning a single axis

of the FLIR plane with the estimated velolty vector of the target; therefore one of the coordinate

axes of the FOV would stay aligned with the oscillation of the plume. The second scheme,

referred to as the diagonal rotating field-of-view (DRFOV), used the 8 x 8 FOV with the diagonal

aligned with the oscillation of the plume. The motivation behind this scheme is that the 8 x 8

FOV is oriented in such a fashion will be able to "see" more of the target's intensity image, thus

enabling the sensor to obtain more measurement information [40]. The third tracking scheme was

the rotating rectangular field-of-view (RRFOV) algorithm developed from previous research

[17,47]. The RFOV, DRFOV, and the RRFOV algorithms [37] were tested along with the non-

rotating field-of-view (NRFOV) filter. The NRFOV is the standard tracker used in previous

studies [17,37,47]. The DRFOV scheme was shown to be superior to the other three tested for

providing enhanced tracking of a ndssile hardbody whose plumne is undergoing a pogo

phenomenon.

The eight-state filter (without pogo states; two target position states, two target velocity

states, two target acceleration states, and two atmospheric jitter states) and the ten-state filter (with

pogo states) surfaced a problem that may have gone unnoticed in previous work. Following

tuning of the filters with the twelve-state truth model, it was discovered that the eight-state filter

outperformed the ten-state filter. An investigation into the cause of the irregularity revealed that

there was a serious observability problem in the both filters. The affected states were velocity and
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acceleration. A recommendation was made to remove the acceleration states in the ten-state filter,

and to model the velocity states in this new eight-state filter as a first-order Gauss-Markov

process.

Eden [8] resumed the research of the space-based FLIR platfo'm. The scope of the

tracking problem was expanded by requiring the filter to track the hardbody of the missile rather

than just the intensity centroid of the FLIR. Since the FLIR could not supply the needed

information about the hardbody location relative to the image center-of-intensity to the Kalman

filter, another measurement source was developed. Under the advisement of the Phillips

Laboratory, the new measurement source was identified as a low-energy laser. The laser actively

acquires measurement data while the FUR obtains its measurement information passively. This

scheme calls for a six-state Kalman filter (consisting of two position states, two velocity states,

and two atmospheric jitter states) to provide both a position vector and a velocity vector estimate

for the target plume. The low-energy laser is scanned along this estimated velocity vector from

the target plume image intensity center to intercept the hardbody. The hardbody is modeled as

a rectangle with binary reflectivity. When the low-energy laser (modeled with a beam width of

2.75 meters at the target) illuminates the hardbody, the reflection is received by a low-energy laser

sensor on the platform. This speckle information is provided to a single-state Kalman filter which

estimates the distance between the center-of-mass and the center-of-intensity along the velocity

vector direction. The center-of-mass is defined as the midpoint of the scan across the hardbody

if the centerline of the laser beam crosses the aft end of the missile and the top (nose) of the

hardbody, or if the laser beam crosses the aft end and one of the sides of the hardbody. The

results of the laser scan show that the interception of the laser with the hardbody occurred only

10-20% of the time. This low ratio of hitting the target was attributed to the six-state filter being
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tuned for estimating only the intensity centroid location on the FLIR plane and not for precise

velocity estimation. Since the velocity vector must be accurately estimated for active illumination

of the target to be a viable concept, it was recommended that the filter also be tuned for accurate

velocity estimates.

Tracking the center-of-mass of a missile hardbody using FUR measurements and low-

energy laser illumination was further investigated by Evans [9]. He surmised that the tracking

error, represented by a straight line between the estimated target center-of-mass and the true

center-of-mass [8]. could provide more insight if it were separated into the x- and y- (azimuth and

elevation) components, or into along-track and across-track (2-d perpendicular axes of the

hardbody) components. Evans proposed the latter method would provide better information

relative to the principle axes directions of the error phenomenon. An eight-state filter was

developed by augmenting Eden's six-state filter [8] with two additional bias states used to estimate

the hardbody center-of-mass [9]. A comparison between the eight-state filter and Eden's one-state

filter used in conjunction with the six-state FLIR filter, resulted in negligible difference in

performance. Evans' analysis of the eight-state filter's error statistics showed that the tracking

error is much greater in the along-track direction than in the across-track direction, and thus the

separate one-state filter and six-state FUR filter performed as well as the all inclusive eight-state

filter.

Aside from investigating the tracking error statistics, Evans enhanced Eden's 2-d hardbody

model (which treated reflectivity as a binary on/off function) with a 3-d hardbody reflectivity

model to provide increased realism in the simulation. Two reflectivity functions, cross-sectional

and longitudinal, were defined based upon empirical data obtained from a radar return off a 20
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x 249 inch cylinder with hemispherical endcaps, rotated longitudinally in the plane of the radar

source [10]. As shown in Figure 1.5, the cross-sectional and longitudinal reflectivity functions

were incorporated into Eden's rectangular hardbody model as 29 discrete weighted line segments

along the longitudinal axis of the hardbody.

Evans also found that the sensitivity level of the low-energy sensor is a factor in

determining the reflectivity received at the sensor [9]. The sensitivity level represents a threshold

below which the reflected return is indistinguishable from sensor noise. A sensitivity factor, %,

is incorporated in the simulation to define the appropriate sensitivity level required to detect a

hardbody's return as well as represent the physical limitations of the sensor.

Reflectivity Function Magnitude
Values vs. Displacement from
Hardbody Centerline

501 25 25 1
O 1 2 3 4 5913 139 5 4 3 2 0!

40.0 m

3.0 m

Figure 1.5 Discrete Implementation of Cross-Sectional Reflectivity Function

1-22



Performance data collection from the eight-state filter and one-state/six-state filter

combination hinged upon the successful illumination of the l'ardbody by the low-energy laser.

Evans was faced with a low torget intercept rate (10% - 20%), which inhibited any useful error

analysis of the center-of-mass filters. Realizing this, Evans generated an ad hoc technique of

offsetting the low-energy laser scan relative to the FLIR estimated velocity vector and "sweeping"

the scan across the hardbody, thus providing constant hardbody illumination information.

However, the "sweep" is not an optimal tool and should only be used to test the center-of-mass

filters in the simulation [9]. Both the 3-d reflectivity hardbody model and laser sweep were

employed to evaluate the performance of the eight-state filter and one-state/six-state filter

combination center-of-mass estimators.

Herrera continued to investigate the use of laser returns to determine the offset between

the hardbody and the plume intensity centroid, however, he used the information contained in the

Doppler spectra of the returns as opposed to the speckle reflectance magnitude [ 14]. Experiments

had shown that the laser speckle return of a solid-propellant rocket motor is of the same

magnitude as that of the hardbody as a result of the metallic particles present in the propellant

[2]. Th1. returns from the plume can cause a non-negligible bias in the intensity centroid to

center-of-mass offset estimate of 25 to 30 meters, up to 90% of the times a laser scan is

successful. This tendency was not incorporated into the simulations completed by Eden and Evans

[8,91. Herrera first showed that, as suspected, a bias, dependant on plume speckle return, existed

in the offset estimates using the one-state/six-state filter combination utilized by Eden and Evans.

Herrera proposed that the two types of information in the Doppler frequency spectra,

magnitude of frequency shift and spread of the return spectrum, could be used to obtain a finer
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discernment of the plumelhardbody interface. This proposal was based on the fact that the

spectral content of the hardbody and plume returns exhibit very different Doppler characteristics

that should be readily distinguishable. His approach to using this information was not to simulate

the Doppler phenomenon itself, but to simulate the quality of the returns provided as

measurements to a single-state linear Kalman filter that estimates the offset. Herrera simulated

the quality of the low energy laser return as a function of laser wavelength and signal-to-noise

ratio, and simulated a specified probability of no Doppler information at a given sample time due

to 'her the plume and hardbody spectra being indistinguishable or the low-power laser beam

missing the target body [14].

To prove the utility of using Doppler spectra, Herrera developed a one-state Doppler filter

to replace the one-state offset estimator used by Eden and Evans [8,9]. He maintained the same

Lndependent filter structure as used before, which utilized a six-state filter (four target dynamics

and two atmospheric jitter states) in conjunction with the offset filter. He also developed a two-

state Modified MAP MMAF that incorporated both the speckle return and the Doppler return

measurements. Both configurations successfully showed that the Doppler return information

allowed more accurate determination of the hardbody/plume interface. The one-state filter based

only on Doppler measurement data delivered unbiased estimates of the offset, and in the case of

the two-state adaptive filter based on both Doppler and speckle information, use of Doppler

spectra permitted accurate calculation of the bias in the offset measurement from the speckle

return [14].
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1.3 Thesis Objectives

Although the past three theses have concluded that LEL measurements can be successfully

used In the tracker, they bave been based on a simplified target dynamics model without

acceleration or pogo states in the simulation of the real world environment. It is very difficult to

estimate the position of the hardbody itself using FUR measurements alone because the FUR

only detects IR radiation from the plume. Two major problems must be addressed while

designing an accurate tracking filter. The first is determining the observability problems in the

filter, and the second is find-:i , location of the hardbody itself.

ev ev•

Plume

Negative. Plume Plume Centroid and Positive Plume
Pogo Equilibrium Point Pogo

Co-Located

0 Target Center of Mass

0 Pogo Equilibrium Point

* Intensity Centroid

Figure 1.6 Pogo Phenomenon
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Apparent motion of the plume centroid in the FUR plane (as modeled in the filter) can

be caused by three major effects: motion of the target, the pogo effect, and jitter in the

measurements caused by the atmosphere. 'The current filter design does not have the capability

to observe the differences between the three effect-; fully. The next phase of research will finish

identifying the specific observability problems discovered by Rizzo (40], and particularly will

determine if there are observability problems associated with jitter and/or pogo. Next, a series of

studies must be completed to incorporate the pogo effect into the model. The pogo effect,

depicted in Figure 1.6, is the phenomenon in which the centroid of the plume oscillates along the

target velocity vector about an offset distance from the hardbody center-of-mass.

Once the observability problems are identified, design of a complete filter can be pursued.

A complete filter model will include all ta zet dynamics states, the measurements from the FLIR,

and the measurements from the LEL. The measurements from the LEL will provide information

on the missile hardbody so that the filter may estimate hardbody location. Note that, due to the

observability difficulties ideutified by Rizzo [40], the last three theses have not included pogo in

either the truth or filter models. Therefore, the robustness of filters including LEL measurements

in the in the presence of the pogo effect has not been validated. In addition, the structu-e of the

filters including LEL measurements v is such that plume intensity centroid location and hardbody

offset were determined independently and the center-of-mass was calculated outside the filter

based on the estimates. This research will attempt to estimate the hardbody center-of-mass

directly using a single filter.

1.3.1 Observability Granian Analysis. The first main objective in the this thesis will

resume the tests to determine what is causing the observability problems in the filter.
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Observability gramians and eigenvalues for six different filter models will be investigated. It is

suspected that the observability gramian matrix elgenvalues associated with either the pogo states,

the jitter states, or both, are small relative to the other eigenvalues. If one set of e!genvalues is

small in comparison to the other, then oscillation of the plume intensity centroid relative to the

hardbody along the velocity vector would be dominated by a single effect and the filter would not

be able to distinguish between the jitter and pogo effects by using only measurements on the

rocket plume (in other words--only FUR measurements).

The first stochastic observability tests will be performed on two linear Kalman filters

without pogo states. One filter will have 12 states including a full a&mospheric jitter model of 6

states, 6 target dynamics states (position, velocity, and acceleration in the X and Y directions).

The other filter will be an eight-state filter that has an approximated atmospheric jitter model (only

two jitter states), and six target dynamics states.

Next, the same models but without the acceleration states will be studied. Comparison

of the observability tests on these 10-state and 6-state filters with the previous 12 and 8-state

filters respectively, should provide insight into whether there is a fundamental problem with how

the full atmospheric jitter model and acceleration states are affecting each other. These first two

sets of tests should also indicate whether there is some interaction between the acceleration states

and jitter states that may be causing degradation of filter performance.

Observability will also be investigated for an alternate eight-state filter model that excludes

the acceleration states. This model will include four target dynamic states, the two pogo states

and the two-state jitter lodel. A velocity vector at a constant angle of 45 degrees will be

simulated to implement thL. ogo states for these studies. These tests can be compared to results

1-27



from the same model with the pogo states removed to find any difficulties stemming from

pogo/Jitter blending, The study will be repeated for the same filter models outlined above but

with a general angle.

The outcomes of the stochastic observability tests will also be analyzed for observability

difficulties of jitter itself because previous research shows ( errors are so much worse than

x(t, ) errors [8,9,14,40]. The differences in error performance (varying from a factor of two to

over an order of magnitude) seem to be due to problems in estimating jitter. This research will

attempt to determine whether there is a fundamental problem with the jitter model itself that

causes such poor estimation of atmospheric disturbances over the filter propagation cycle.

If the studies above confirm the suspicion that pogo and jitter states are difficult to

distinguish, then one may conclude that measurements from the FLIR of the plume intensity

centroid alone cannot provide the desired tracking performance of the missile hardbody due to

limited estimation accuracy. Inclusion of additional measurements, such as laser Doppler and/or

speckle, should increase filter performance for a number of reasons. Laser measurements provide

information on the missile hardbody itself as opposed to just the missile plume. Furthermore.

laser measurements should enhance observability of the pogo and jitter states. By "knowing"

where the hardbody is in relation to the plume, the filter will be able to distinguish the

fundamental difference between jitter and the pogo phenomenon. Atmospheric jitter will be

manifested as oscillations of both the hardbody and plume in certain frequency ranges. Pogo

should be differentiable as a relative oscillation between the hardbody and plume with a different

characteristic power spectral density (PSD). A more thorough descriptions of the truth and filter

models are contained in Chapters III and IV.
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1.3.2 Sensitivity Analysis of Single Filters. In order to verify the results of the

observability studies completed In the previous section, a series of 16 Monte Carlo performance

analyses will be performed using a software package called Multimode Simulation for Optimal

Filter Evaluation (MSOFE) [6]. Table 1.2 shows the combinations of truth versus filter models

Table 1.2 Monte Carlo Analysis Combinations

TRUTH MODEL FILTER MODEL

SIMv NJ DYN fPOGO ACCEL [JrrE ~jM1R DYN IPOGOINI
1 4 4 4 2 6

2 6 4 2 4 4

3 6 4 2 4 2 6

4 6 4 2 2 4 6

5 6 4 2 2 4 2 8

6 6 4 2 1 2 6

7 8 4 2 2 4 4

8 8 4 2 2 4 2 6

9 8 4 1 2 2 4 6

10 8 4 2 2 2 4 2 8

11 8 4 2 2 4 4

12 8 4 2 2 4 2 6

13 10 4 2 2 2 4 4

14 10 4 2 2 2 4 2 6

15 10 4 2 2 2 2 4 6

16 10 4 2 2 2 L 2 4 2 8
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to be investigated and the states each model contains. A subset of the filter models studied in the

previous section will be compared, via 10-run Monte Carlo analyses, against various truth models

that incorporate different combinations of states. The number of analyses has been reduced to

include only the combinations that should best provide insight into how the observability

difficulties are affecting filter performance. Monte Carlo analysis should indicate how estimatable

the individual states are for each combination of filter and truth model.

The first five runs shown in Table 1.2 investigate performance of filter models with

combinations of the approximated atmospheric jitter model and pogo states in comparison to a

truth model with no pogo phenomenon modeled. The second five runs analyze the same filter

models against a system model that includes the pogo states. These first two sets of Monte Carlo

analyses should help to identify the relative effects of the jitter and pogo states in the filter model

when presented with different real-world simulations. It is predicted the effects due to jitter are

dominant in the filter model and addition of the pogo states may actually degrade filter

performance due to potential observability difficulties. It is further suspected that filter

performance against a system without pogo modeled will be better than performance against a

system that incorporates the pogo phenomenology.

The last six sets of Monte Carlo analyses utilize two different truth models with target

dynamic acceleration states included. One truth model (10-state) incorporates jitter states and the

other (8-state) does not. The performance of four different filtet models, with and without jitter

and/or pogo states, are analyzed against the two truth models. The last sets of Monte Carlo runs

will provide insight into what combinations of filter states provide the best performance when the

target acceleration is present. Since target acceleration is extremely difficult to estimate in the
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long range ballistic missile problem, it is suspected that performance of all filters wili oe oegraded

by adding the target acceleration states to the truth model. In addition, it is doubtful that

including the acceleration states !n the filter model will alleviate the problem. In fact,

performance may be degraded by integrating the poorly estimated states.

An additional benefit of using the MSOFE package for the aforementioned Monte Carlo

analyses, is that it may (or may not) provide independent verification of results obtained from the

AFIT software. Since the simulations in MSOFE will use continuous-time dynamics models and

will be tested with independent software code, any major diffe'ences in results may shed light on

the particular truth model simulation in the existing AFIT software.

1.3.3 Incorporation of Larer Measurements into Elemental Filters. Based on insight from

previous research, it is expected that a truth model that incorporates the six-state jitter model, the

pogo phenomenon and four target dynamics states will be used for this research. It is desired that

the filter including the pogo states that performed best in the previous analysis be used to develop

the optimal filter that directly estimates hardbody center-of-mass location.

The results from the previous step will be combined with the last three years' research to

design and evaluate a filter that incorporates the low energy laser measurements with no

intentional decoupling of the offset state from the other states. This research will incorporate the

Doppler measurement model developed by Herrera [141. The reason this model was chosen is

that it delivers offset measurements that are not corrupted by any bias due to plume speckle

reflectance. The Doppler measurement model is also a more realistic simulation of the real world

since it incorporates the 3-dimensional reflectivity model developed by Evans [9]. To establish

the validity of the new filter, the simulations will be chosen such that the highest quality of LEL
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measurements are produced. Therefore, initial tests of the filter will be under the most benign

conditions (i.e. low probability of miss, high signal-to-noise ratio, and short LEL wavelength as

described by Herrera).

The key difference of the new elemental filter will be the inclusion of the pogo dynamics

model in the design, under the assumption that its undamped natural frequency and expctcd rms

amplitude are known. Another key feature of the elemental filter will be the revision of the filter

states such that the target dynamics states describe the hardbody center-of-mass, as opposed to the

plume intensity centroid. Performance of the filter will be analyzed via Monte Carlo simulations

in the AFIT software. The intent of this objective is to build a single elemental filter which can

eventually be incorporated into a MMAF structure, allowing that adaptive structure to identify the

actual undamped natural frequency and rms amplitude of the real-world pogo phenomenon.

1.3.4 Multiple Model Adaptive Filter Design and Analysis. After a single, optimal filter

structure that utilizes all both the FLIR and LEL sensor measurements is established, the

preliminary work for a MMAF can begin. The MMAF is an algorithm that incorporates several

filters running simultaneously. The algorithm monitors the errors from each filter and selects the

solutions from the filters with the lowest errors at any instant in time. A MMAF allows the

tracker to use a filter that is tuned for the exact conditions in existence, as opposed to a general

filter tuned for a wide variety of conditions. A block diagram of the structure of a MMAF is

shown in Figure 1.2. In Figure 1.2, .^ is the filter estimate, r. is the error, or residual, and pK

denotes the probability weighting factor that determines which individual filter solutions are used

at the particular instant in time.
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The first step in the design of the MMAF is to identify the elemental filters that will be

used in the filter bank. The parameter values, a, that the filter is based on will be varied and the

filter tuned for maximum performance based on those different assumed values. Since the design

of the elemental filter described in the previous section was dependent on prior knowledge of the

pogo conditions, frequency and amplitude of the pogo oscillation will be the parameters chosen

for variation in the MMAF structure. The tuning process will result in a series of filters with

identical structure, but each tuned for optimal performance under different target conditions

(specifically, pogo conditions). A baseline performance for each of the above filters must be

established through Monte Carlo analysis before moving to the next step. This research actually

accomplishes the design of one such elemental filter, as the essential first step to the design and

analysis of such an MMAF.

Once the individual filters have been selected, they may be incorporated into the adaptive

algorithm structure. Then, the entire MMAF could eventually be evaluated via Monte Carlo

sensitivity analysis. This analysis could be compared to the baseline performances previously

established with the elemental filters to determine adequacy of the adaptive parameter estimation.

The observability tests described in the first objective, combined with the tuning accomplished for

the elemental filters, may provide the insight to develop alternate adaptive algorithms. It is

expected that the performance of the MMAF or MMAFs will eventually be better than any filters

previously designed.

1.4 Thesis Overview

This chapter has described the past AFIT research in the use of Kalman filters to track

airborne targets. It has also introduced the specific problem research that this thesis will be
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directed toward solving, and the approach and objectives have been set in the process. Chapter

II contains a basic discussion of linear Kalman filter theory and the multiple model adaptive

algorithm. It also contains a description of the coordinate frames used in the thesis and how they

relate to the simulated tracking scenario. The truth models used in the thesis are presented in

Chapter III, as well as specifics on how the various FLIR and LEL measurements are modeled.

Chapter IV contains a development of the filter models. Chapter V describes the procedures and

results obtained from the preliminary observability studies, including both the observability

gramian tests and the MSOFE Monte Carlo simulations. Chapter VI will portray results from the

simulations completed with the AFi' software. Finally, Chapter VII lays out the conclusions and

recommendations for future research efforts.
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11. Filtering Techniques and Reference Coordinate Systems

2.1 Introduction

This chapter describes the technical filtering theory upon which the thesis is based. A brief

review of the linear Kalman filter (LKF) is given. Since the new filter designs incorporating the

plume pogo states and the low energy laser measurements require a nonlinear measurement

update, the extended Kalman filter equations for a nonlinear update are also reviewed. This

chapter is meant only as a review and the reader is referred to the source literature for a more

thorough development of the topics [21]. The elemental filters are based on the theory presented

in the Kalman filter (KF) section, but the structure of the Multiple Model Adaptive Filter (MMAF)

is also discussed briefly in this theory chapter. Although this thesis did not develop an MMAF

algorithm, the original intent was eventually to incorporate the elemental filter that was developed

into a MMAF, so the theory is presented here for completeness

In addition, the author has included a section that explains the reference coordinate

systems utilized throughout the thesis. The reference system used for the real world three

dimensional simulation space is presented first, followed by all the other reference systems and

appropriate coordinate transformations necessary to accommodate the appropriate sensors and

corresponding filter algorithms.

None of the theory contained in this chapter has changed and all of it has been developed

in previous theses. Consequently, the author has taken the liberty of borrowing heavily from the

excellent presentations made by his predecessors [8,9,14,40].
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2.2 Kalman Filter Theory

2.2.1 Introduction. A Kalman filter (KF) is "an optimal recursive data processing

algorithm" [21]. The KF uses all available information to estimate the current values of variables

of interest (the state vector) of a system. The KF arrives at its estimate through a priori

knowledge of the system and measurement device dynamics; statistics of noise corruption,

uncertainties, and measurement errors; system noises and uncertainties; and initial conditions. The

estimate provided by the KF is the optimal estimate if the system can be modeled as linear and

driven by white Gaussian noise. The optimal estimate will be better than any estimate available

from any single measuring device. The important feature about the KF is that it not only directly

models the variables of interest, but also models errors so that it provides estimates of how

accurate it "thinks" the state estimate is (through the filter covariance). The following is a

simplified version of the development presented by Maybeck [21]. For a rigorous development

of the Kalman Filter theory and MMAF algorithm, the reader is referred to Maybeck's Stochastic

Models, Estimation, and Control, Vol. 1 and Vol. 2. The sections describing the Kalman filter

were reproduced from Evans and Herrera [9,141 and the MMAF section is repeated in whole from

Herrera [ 14].

The a priori statistics of the mean and covariance provided to the filter as initial state

conditions are defined by:

E{tx()} = . (2-1)

E{[x(to) - Ro][x(t.) - 2.°]} = P. (2-2)

where the notation (^) indicates an estimated value, and El ) is the expectation, or ensemble

average, of the possible outcomes. The Kalman filter receives measurements at a prescribed
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sample rate and propagates the state conditioned upon the measurement time l story Z(t,), given

as:

Z(t1) = '(2-3)

L. ,J
where z(t,) is the measurement data available at sample time tj. Then the conditional mean and

covariance of the state variables are given by:

I(t;) = E{x(t,) I Z(t@) = Z,} (2-4)

p(t4) -= E{[x(ti) - g(t7)] [x(ti) - k(ti)] T I Z(t,) = Z,} (2-5)

where Z, is a specific realization (observed set of values) of the measurement history Z(ti).

2.2.2 Linear Kalman Filter. The simplest form of Kalman filter, the linear Kalman filter,

is developed in this section. In order to develop the linear KF, a mathematical model of the

system dynamics must be established and measurements must be available. A system is generally

modeled with a set of linear state differential equations of the form:

I(t) = F()x() + B()u(t) + GQ)w() (2-6)

where

F(t) = homogeneous state dynamics matrix

x(t) = vector of states of interest

B(t) = control input matrix

u(t) = deterministic control input vector

G(0) = driving noise input matrix

w(t) = white Gaussian driving noise -,ector
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The i•-, of the white Gaussian driving noise vector is:

E(w(t)) = 0 (2-7)

and the noise strength is Q(t:

E{w()w(t + r)r = QQ)6(t() (2-8)

The equivalent discrete-time system model of Equation (2-6) is needed to implement the

algorithm on a digital computer. The general form of the discrete-time state space form (denoted

by the d subscript) of that model is given by:

X041) = 4)(tiOt1)x(ti) + BD(td)uQt) + Wd(l) (2-9)

where

b(ti+j,tj) f= the n x n system state transition matrix that satisfies the

differential equation and initial condition:

[(,)]= FQ)(t) (2-10)

dt

(tit) (2-=1

and where

x(t1) = discrete-time vector of states of interest

Bd~t) = discrete-time control input matrix

u~t = discrete-time deterministic control input vector

wd(ti) = discrete-time independent, white Gaussian noise process

with mean and covariance statistics define' as:

E(wd Q(,)) = 0 (2-12)

E w,(,)wQT(i)) { d(ti) t ji t (2-13)

0 tj
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with
I,,'

od = f4(tl.1,r)G (()Q ()G r(t)4T(t ,) dt (2-14)

The Kalman filter incorporates measurement information from external measuring devices

to improve its estimate of a desired state. The discrete-time (sampled data), linear measurement

model is of the form:

z(t,) = H(tQ)x(t,) + vQt) (2-15)

where

z) rn m-dimensional measurement vector at sample time t,

H(t1) = state observation matrix

x(t,) = vector of states of interest

(tj) f= white Gaussian measurement noise

The discrete white Gaussian measurement noise v is independent of both x(to) and w for all time,

and has a mean and covariance, R, given by:

E{v(t,)) = 0 (2-16)

E(V(t )VT(t )} = { tt=) j (2-17)

The Kalman filter propaga..• the ztate conditional mean and its covariance from the

instant in time immediately following the most recent measurement update, t,, to the instant in

time immediately preceding the next measurement update, t,+', by numerical integration of the

following equations:

.(t/t,) = F(t)IQ/t,) (2-18)

2-5



P(t0t1) - F(t)P(t/t1 ) + P(t/t1 )FTQ) + GQ)QQ)GT() (2-19)

where the notation .I (t:) denotes optimal esti aates of x at time t, conditioned on measurements

through time t,, and with initial conditions:

1(ti/ti) = l.t) (2-20)

P(t,/tP) - pot") (2-21)

where S, (t:,) and P(tQ) are the results of the previous measurement update cycle. At time to, io

and P. from Equations (2-1) and (2-2) are used to initialize the first propagation.

That update cycle, when a measurement becomes available at time t, is based on the

following update equations:

K(t,) = P(t())HT(t)[HI(t,)P(t[)HI(t,) + R(t,)]-l (2-22)

2(t:t) = 2(ti') + K(t1)[z(t 1) - H(t,),t(t1 )] (2-23)

P(t1 ') = P(t-) - K(t)H(Q)P(t(') (2-24)

where K(t) is the time-varying Kaiman filter gain matrix that assigns "weights" to the new

information (consisting of the difference between the actual measurement and the filter's

prediction of the measurement, H(t)Q), as seen in Equation (2-23)) based on known

measurement noise statistics and filter-computed covariances.

In some instances (as with the case when pogo is included in the elemental filter), the

discrete-time measurement update is a known nonlinear function of the state vector. In such cases,

2-6



the following nonlinear extended Kalman filter update model is used in place of Equation (2-15).

The measurements are modeled as:

z(t,) = h[x(t,), t1 ] + v(tQ) (2-25)

where h[.,.] is a known vector of functions of state and time, and v is the same discrete white

Gaussian measurement noise as defined before. When a nonlinear measurement is available,

Equation (2-22) is still used to determine the Kalman filter gain matrix, but the matrix H is

defined by:

ah[x, t,] (2-26)

The updated state vector becomes a function of the nonlinear residual, [z() - h[X(t1 ),t:)] and

Equation (2-23) is modified to become:

.t(t) = () + K(t,){z(t,) - hi 2 t(),t]} (2-27)

2.2.3 Multiple Model Adaptive Algorithm. The optimality of the state estimator is

dependent upon complete knowledge of the parameters that define the best model for system

dynamics, output relations, and statistical description of uncertainties [22]. For Kalman filter

tracking applications, maximum performance is achieved when the parameters of the filter

dynamics model match the parameters of the target being tracked. Often. the parameters are

known only with some uncertainty and may exhibit time-varying characteristics (such as in the

case of maneuvering targets with changing acceleration levels). Thus, there is a need to devise

a method that produces optimum state estimates despite the incomplete a priori knowledge of

parameter values, and provides the estimates in an adaptive, on-linc fashioa. The MMAF satisfies

these requirements [22].
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To implement the MMAF algorithm, it becomes necessary to discretize the parameter

space by the judicious choice of discrete values that are representatively dispersed throughout the

continuous range of possible values. For the tracking problem at hand, a target can display K

different discrete sets of pogo conditions corresponding to one of K discrete combinations of pogo

oscillation frequency and magnitude. As previously shown in Figure 1.2, a Kalman filter is then

designed for each choice of parameter value, resulting in a bank of K separate elemental filters.

Let a denote the vector of uncertain parameters in a given linear state model for a

dynamic system. A system model would be represented by the following first-order, stochastic

differential equation:

.t() = F(a)x() + B(a)u(t) + G(a)w(t) (2-28)

with noise c upted, discrete-time measurements given by:

z(tQ) = H(a)x(tQ) + v(tQ) (2-29)

where

x(t) = n-dimensional system state vector

u(t) = r-dimensional deterministic control vector

w(t) = s-dimensional white, Gaussian, zero-mean noise vector

process o0 strength Q(a)

z(t) = mn-dimens onal measurement vector

v(tj) = in-dimensional discrete-time white, Gaussian, zero-mean

noise vector process of covariance R(a)

F(a) = n x n system plant matrix

B(a) = n x r input distribution matrix

G(a) = n x s noise distribution matrAx

H(a) = in x n matrix relating measurement to states
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The parameter vector, a, is discretized !nto a set of K finite vector values, a,, a),...a., and

associated with each ak is a different system model of the form given by Equations (2-28) and

(2-29). Each elemental Kalman filter, tuned for a specific ak, produces a state estimate which is

weighed appropriately using the hypothesis conditional probability Pk(4) to produce the state

estimate 1,,, (t) as a probabilistically weighted sum, as shown in Figure 1.2 on page 1-9, where:

f,(,, )I,.Z(,.,)(Z~ Iak,ZH~k •I )
PA(tj) = K (2-30)

j11

f 1(t,)j z (,, .)(z ja k .z , _0- - e x p { .
(2it)m/n IAQ) 112 (2-31)

('1 = {-I--x)(tj;'(t.)rk(ti)

with

Ak(tO) = kth filter's computed residual covariance

=- Hk(t)PA(tj)HJk(t,) + Rk(ti)

rk(tI) = kth filter's residual

= I z(t1) - Hk(tA)(tid) ]

a. = parameter value assumed in the kth filter

Pk(ti) = kth filter's computed state error covariance before

incorporating the measurement at time t,

Z(tj.j = measurement history up to time t1.,

The residual of the kth elemental Kaiman filter, that best matches the current pogo

conditions associated with the parameter value ak, is expected to be smaller than the residuals of

the other mismatched filters, so that the exponential term in Equation (2-31) is smallest for the

kth elemental filter. Therefore, the hypothesis conditional probability given by Equation (2-30)
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with index corresponding to the "correct" filter will then be the largest among the conditional

probabilities, thus assigning the most weight to the "correct" state estimate. This algorithm

performs well if each elemental filter is optimally tuned for best performance for specific pogo

conditions, causing its residual to be distinguishable from those of the mismatched filters. It is

also important not to add excessive amounts of pseudonoise to compensate for model

inadequacies, as is often done in conservative tuning of single Kalman filters, since this tends to

mask the distinction between good and bad models [21]. If the quadratic forms within the

exponentials of Equation (2-31) are consistently of the same magnitude, then Equation (2-30) will

result in the growth of the p. associated with the filter with the bmallest value of I Ak L The

values of I Ak I are independent not only of the residuals, but also of the "correctness" of the

K models, and so the result would be totally erroneous [22]. Therefore, the scalar denominator

of the exponential in Equation (2-31) might be removed in the final implementation of the

algorithm.

The output of the MMAF algorithm is the probability-weighted average of the elemental

filter's estimates given by:

K

)= p(tj)2k(t1i.) (2-32)
k-l

The conditional covariance matrix for the MMAF is computed as:

K

,,.f(ti ) = EPk(t,)[P(t) + 9Y,(t4').€(')] (2-33)
k-I

where

Y.k(ti) = ffi (t+) - S (ti)

Pk = kth filter's conditional hypothesis probability
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PA(ti*) - kth filter's state error covariance matrix after incorporating

the measurement at time t,

Since the values of pk(ti) and 2 (t:,) depend upon the disci ete measurements taken through time

ti, P,,, (t:+) cannot be precomputed as in the case for the elemental filters. However, Equation

(2-30) need not be computed for the on-line filter algorithm.

The calculated probabilities of Equation (2-30) should be modified by an artificial lower

bound [17,22,37]. This lower bound will prevent a mismatched filter's hypothesis conditional

probability from converging to (essentially) zero. If a filter's ph should reach zero, it will remain

zero for all time, as can be seen from the iterative nature of Equation (2-30). This effectively

removes that filter from the bank and degrades the responsiveness of the MMVAF to future changes

of the parameter values. If some future pogo condition matched the model for which the Pk was

locked onto zero, that elemental filter's estimate would not be appropriately weighted and the

MMAP estimate would be in error. In prtvious work, Tobin [47] established a lower bound of

.00i for Pk(ti).

2.3 Simulation Space

Simulation of the tracking scenario, which encompasses the target trajectory, the FLIR

sensor operation, and the low-energy laser illumination of the missil• hardbody and the generation

of the speckle return and Doppler measurements, is performed on a digital computer. A 3-

dimensional "simulation space" is generated wherein a target plume 3s propagated along a realistic

trajectory. Several coordinate frames in the simulation space provide the means of mathematically

projecting the target plume's infrared image and velocity vector onto the two-dimensional FUR
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image plane (13,16,37]. In addition, these frames are utilized to project a representation of the

hardbody center-of-mass, as well as to define the start and orientation of the low-energy laser scan

for generating speckle and Doppler measurements [8,9]. This section describes the different

coordinate frames of the simulation space and covers the process of pointing the FLIR sensor at

the target during tracking. The coordinate frame descriptions and figures in this section are

repeated from Herrera [14].

2.3.1 Coordinate Frames. As shown in Figure 2.1, three primary coordinate framcs are

defined in the simulation space: a system inertial reference frame, a target reference frame, and

an a-P-r reference frame. Each of these reference frames is described in the following paragraphs.

2.3.1.1 Inertial Reference Frame. The inertial reference frame is a North-Up-East (NUE)

frame wherein the target flight trajectory occurs.

Origin: location of the FUR sensor

Axes: e, - due north, tangent to the earth's surface, defines zero azimuth

ey - inertial "up" with respect to fiat earth approximation

e,- vector completing right-hand coordinate set, defines 90, azimuth

Note: The azimuth angle (a) is measured eastward from e.. The elevation angle

(P) is measured "up" from the horizontal plane defined by e, and e,.

2.3.1.2 Target Plume Reference Frame. This frame is located at the target plume with

one of its unit vectors co-linear with the target's velocity vector.

Origin: plume intensity centroid

Axes: e, - along the true velocity vector

e., - out the right side of the target, orthogonal to both e, and the

LOS vector

ep:• - vector completing the right-hand coordinate set
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÷YMM (FLIR)

Figure 2.1 Three Primary Coordinate Frames in Simulation Space

Note: , - along the velocity vector

P- perpendiculai to the velocity vector

Y peipendicular to both, and p.

2.3.1.3 a - P - r Reference Frame. The a-j3-r reference frame is defined by the azimuth

angle a' and the elevation angle Pi' measured with respect to the FUR line-of-sight (LOS) vector

e,. The true azimuth ax and the true elevation 0 are referenced from true north and the horizon.

This frame is used to project the target's position and velocity onto the FLIR plane.

Origin: center of FLIR FOV

Axes: e,, coincident with the true sensor-to-target LOS vector
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e,, and e, define a plane perpendicular to e, rotated from Inertial e, and ey

by the azimuth angle (a) and elevation angle (0)

There are three special coordinate frames associated with the at-p-r reference frame: the a-0

(FLIR) plane, the absolute a-p-r reference frame, and the trans-FLIR plane,

2.3.1.4 a - 0 (FUR Image) Plane. The FUR plane is used to obtain the measurements

of the target plume position and is the reference frame for the geometrically derived velocity

vector components of the target's intensity centroid. The FUR plane is defined by the ea and e,

unit vectors, with the LOS vector (orthogonal to the FLIR plane) representing the pointing

orientation of the FLIR sensor, and the high and low-energy laser. Note the orientation of the

+y,., axis in Figure 2.1, which allows the LOS vector to be positive towards the target when it

is considered the third member of a right-handed set of coordinates as defined by the unit vectors

e, - e. - e,

Due to the large distance to the target (approximately 2,000 kilometers), small angle

approximations are invoked, allowing the "pseudo" azimuth and elevation angles, a' and 03', to be

linearly proportional to the x and y cartesian coordinates in the FLIR plane. The x and y

coordinates are measured in pixels (a pixel of linear length corresponds to 15 pradians of arc) and

will provide a means of evaluating the performance of the Kalman filter associated with tracking

the intensity centroid of the target.

2.3.1.5 Absolute a-p-r Reference Frame. The absolute a-p-r reference frame is fixed in

inertial space at the initial ot-p-r coordinates of the target. This coordinate system defines the

initial pointing direction of the FUR LOS vector e•, and is also used to define the true and filter

estimated target positions and velocity components on the FLIR plane.
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2.3.1.6 Trans-FLIR Plane. This plane is defined as the result of translating the center

of the FLIR FOV to the true center-of-mass of the missile hardbody. The frame is used to

determine the xna and yFLm coordinate errors of the hardbody center-of-mass filter's estimates,

for performance analysis purposes.

2.3.1.7 ALT/ACT Plane. This plane, shown in Figure 2.2, is a rotation of the trans-FLIR

plane by the true orientation angle 0,, formed by the target trajectory with respect to the FUR

coordinate plane. It is used to determine the along-track and across-track components of the

tracking error mean and covariance of the hardbody center-of-mass estimates [9]. This frame was

not used in this thesis.

2.3.2 FUR Image Plane. All dynamic events associated with the target plume intensity

"pattern" or "function," and the active illumination of the missile hardbody in 3-dimensional

inertial space are projected onto the 2-dimensional FLIR image plane. The measurements

generated as a result of IR detection by the FUR sensor are provided to the enhanced correlator

algorithm, which produces "pseudo-measurements" to the Kalman filter to update its state

estimates. For the missile hardbody, low-energy laser-generated measurements of the offset

distance relative to the plume intensity centroid are geometrically projected onto the FLIR image

plane. Thus, the FLIR image plane is the realm in which the performance of the Kalman filter

is evaluated. Also note that it is a natural plane for such evaluation of a laser weapon, since

pointing angle errors are critical and range is not. This section introduces the FLIR Field-Of-View

(FOV) "tracking window," and discusses the construction and projection of the target models.

2.3.2.1 FUR Field-Of-View. The FUR FOV, shown in Figure 2.3, consists of an 8 x 8

pixel sub-array (in the FUR sensor 300 x 500 pixel array) which provides sensed information as
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Figure 2.2 FUR Plane, Trans-FLIR Plane, and ALT-ACT Plane

a function of the varying intensifv of the plume IR image and the background and internal FLIR

noise. Based upon this information, the position estimates from the nine-state Kalman filter serve

to center the centroid of the plume IR image in the FOV. Since the low-energy laser is

boresighted with the FOV, the filter position and velocity estimates of the intensity centroid define

the origin and orientation of the laser scan to "paint" the. hardbody. The errors of the filter's

estimates of position, velocity, and centroid/center-of-mass offset, are expressed in units of

"pixels" or "pixels"/second. These errors become meaningful through a pixel proportionality

constant, kP equal to 15 iiradians/pixel [14,40]. With this constant, 1 pixel corresponds to

approximately 30 meters for a range of 2,000 kilometers.
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Figure 2.3 Target Plume Image in 8 x 8 FUIR Field-of-View (FOV)

2.3.2.2 Target Models on the FUR Plane. The difference of two Gaussian intensity

functions creates a planform that models the hotspot of the plume target on the FUR plane [40],

as shown in Figure 2.3. The "trailing" function is subtracted from the "leading" function to

construct a suitable approximation of empirically observed plume intensity p'ofiles. If the

computed result is negative at some point, that negative value is replaced by zero. The missile

li±3dbody is not sensed by the FUIR sensor. However, it is geometrically projected onto the FLIR

plane as a rectangle, located an offset d[ ,e from the plume centroid along the target's velocity

vector. Since the FLIR sensor ca:i ly dLCr - IR intensity shape function of the plume, the
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remainder of this discussion emphasizes the intensity centroid model. More about the hardbody

model will be presented in Chapter TIT.

2.3.2.3 Target Plume Model on ile FUR Plane. The radiated energy from each intensity

function is represented as a bivariate Gaussian distribution with elliptical constant intensity

contours. Each of the two bivariate Gaussian intensity functions is given by [40]:

I [xy,ý,(),yP,,)] = lm.exp[-0.5(AxAy)PN1(AxAy) T 1 (2-34)

where

Ax = (x - xpt.)cosO0 + ( y - ypk)sin0,, measured along the along-track
(ALIT) axis of Figure 2.2

Ay = ( y - ypdcosO, - (x - xpk)sinO,, measured along the across-track
(ACT) axis of Figure 2.2

O, = true target orientation angle between the projection of the velocity

vector onto the FLIR plane and the x-axis in the FUR plane; see
Figure 3.2

x, y = coordinate axes on the a - P plane

xp,., Ypp.e = peak intensity coordinates of the single Gaussian intensity function

I,.,• = maximum intensity function

P = 2 x 2 target dispersion matrix with eigenvalues (aY2 and FPv2) that

define the dispersion of the elliptical constant intensity contours, and
eigenvectors that define the orientation of the principle axes of these
ellipses

Figure 2.4 illustrates the spatial relationship between the two intensity functions along the target

e, axis. The displacement values are based on the assumption that the dispersion of the exhaust

plume in the e,, direction (normal to both e, and the LOS vector) is approximately 20 times the

diameter of the missile [40]. With the dimensions of the hardbody chosen as 40 meters long and

3 meters in diameter, the centroid of the first intensity function is located 65 meters behind the
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Figure 2.4 Spatial Relationship of Target Plume Gaussian Intensity Functions

hardbody center-of-mass. The placement of the first centroid simulates the composite centroid

of the exhaust plume being close to the missile exhaust nozzle, whereas the position of the second

centroid enables one to simulate different plume shapes. The second, "trailing" centroid is

arbitrarily located 110 meters from the center-of-mass and the defined spatial relationship remains

fixed in the target frame during the simulation. Any external forces acting on the missile other

than thrust and gravity are assumed negligible, which thus yields an assumed zero sideslip angle

as well as zero angle of attack. These assumptions allow the semi-major axes of the elliptical

constant-intensity contours to be aligned with the projection of the target's velocity vector onto
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the FLIR image plane, and provides a simplified simulation geometry while retaining the essential

features of the trajectory simulation.

2.3.2.4 Target Plume Projectiun onto the FUR Plane. As the target plume is propagated

through inertial space, the output of the FUR pixels is simulated by projecting the two intensity

functions onto the FLIR plane. The geometry of the projection is shown in Figure 2.5. The

"reference target image" is oriented on the FLIR plane to correspond to the largest apparent

planform (i.e., with its velocity vector orthogonal to the LOS vector) at a given initial reference

range, r.. As seen in Figure 2.6, the target intensity image is defined by the dispersion along the

principle axes of the two Gaussian intensity functions, given by:

(r) (2-35)

r r

a , = - [ , p + ( o C F - o Y. ) c o s y ) ]
(2-36)

= apt. + VILOS (AR - 1)]

where

a,o, ap,,,, = the initial dispersions of the target intensity functions along e,, and ep, in the

target frame of the reference image

a,, a,,, = the -,urrent dispersions of the target image

ro = initial sensor-to-target range of the reference image

r = current sensor-to-target range

v = initial velocity vector of the target

v = magnitude of v

VLOS ffi projection of v onto the a - 0 plane (FLIR); i.e., the component of v
perpendicular to the LOS vector
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Figure 2.5 Target Plume Intensity Centroid Projection Geometry

= magnitude of V.•os:

V. LOS = c + (2-37)

y = target aspect angle between v and the a - P3 plane (FLIR)

0 = angle between v.Os and +Xnm

AR = a,,Jcp,,,: aspect ratio of the reference image

Referring back to Figure 2.4, the location of each intensity function, or "hotspot," is

initialized as a displacement from the hardbody center-of-mass. The intensity functions are

oriented in the FLIR plane via the true target orientation angle 0,. The relative positions of the
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Figure 2.6 Intensity Centroid Dispersion Axes in FLIR Plane

two intensity functions in the FUR plane vary in response to the change in target aspect angle y

(of Figure 2.5) while the spatial relationship of the hotspots remains the same in the three-

dimensional target frame. If the plume pogo forcing input is applied, the hotspots do not remain

fixed in the target frame, causing the composite image centroid to oscillate along the velocity

vector and produce additional perturbations to the hotspot image in the FLIR plane, as will be

described in the truth and filter model sections in Chapters III and IV respectively.

2.3.2.5 Target Plume Velocity Projection onto the FUR Plane. The general discrete-time

equation that models the target dynamics is given by:

x(t1 .,) = 4(t~4 , t1)x(t,) + Bd(ti)U(ti) + Gd(tI)wd(t,) (2-38)
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where

cI(tj÷,, t:) = the system state transition matrix

x(t) discrete-time vector of states of interest

B1 (ti) = discrete-time control input matrix

u(O = discrete-time deterministic control Input vector

G1 (ti) = discrete-time driving noise input matrix

wd (ti) = discrete-time, zero-mean, white Gaussian noise process with independent

components and covariance Q.

Based on the geometry shown previously in Figure 2.5, the projection of the target's

inertial velocity vector onto the FLIR image plane is the deterministic input vector given by [13]:

U"101) = [&() "/(to)] (2-39)

where

u,d:,) = true target deterministic input vector

W(ti) = target azimuth rate in the FUR plane

1(ti) = target elevation rate in the FLIR plane

As seen in the inertial frame diagrams of Figure 2.7, the azimuth angle can be defined as:

a(t) = arctan N (2-40)

Taking the time derivative of Equation (2-40) and noting that the sensor-to-target range is large

so that a'(t,) = 6L(t1), the azimuth velocity in the FLIR plane is given by:

'(t) = (t) = x(t)v,(t) - z(t)yv(t) (2-41)
x I() + z 2(t)

where

v,, v, = components of the target's inertial velocity in the e, and e, directions
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Similarly, the elevation velocity in the FLIR plane is given by:

(t) P() rA(t)v(t) - Y(th(t) (2-42)
r2 (

where

vy = component of the target's inertial velocity in the e, direction

= horizontal projection of the sensor-to-target range, with its time derivative.

expressed as:

h(t) xfl)v,(t) + z(t)v(t) (2-43)th~t) = r,(t)

ey

V

Xý ex 
e

• ~~ .. . . . . "- '- .

Zp

S: eyl rh

zrh

Azimuth Geometry Elevation Geometry

Target Plume InteWty d r -0 + z2

Figure 2.7 Inertial Velocity FLIR Plane Projection Geometry
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2.3.3 FUR Sensor Pointing Controller. The Kalman filter's propagated estimates of the

intensity centrold's position dictate the necessary change in azimuth and elevation that the FUR

sensor should undergo over the next sample period to center the hotspot on the FLIR FOV plane

at the next measurement sample time. Ideally, these positional estimates are fed as commands to

a pointing controller that physically implements the directional changes within one sample period

(1/60 see). The original sample period used in the recent past for the benign trajectory scenarios

has been 1/30 second. For this thesis, the sample period was cut in half for two major reasons.

First, It was hypothesized that the reduced sample period might allow for closer inspection of the

difficulties surrounding estimation of the atmospheric jitter states. If the reduced sample period

does not aid this investigation, it should at least reduce the differences in errors at the beginning

and end of the propagation period. The second reason that the sample period was reduced to 1/60

second was to maintain conformity with the current hardware and software being developed at the

Phillips Laboratory. The most recent programns utilizing the FLIR and LEL measurements for

tracking and pointing a high energy laser are using the 1/60 second sample period [4].

The activation and execution of the commands to the FUR for directional changes will

not be perfect due to the lag dynamics inherent in the controller, and the resultant mis-positioning

of the hotspot may be interpreted by the filter as target motion, causing inaccurate estimates of

future states. Whether or not to include the controller lag dynamics in the simulation was the

subject of a previous thesis [371. It was found that the apparent target motion caused by the lag

dynamics are interpreted by the filter as atmospheric jitter (as a result of the choice of tuning

parameters for the filter), implying a degree of robustness on the part of the filter to track a target.

Moveover, the degradation in tracking performance due to the dynamic lag was found not to be

of primary importance. Thds, the controller is modeled as lag-free in this research.
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2.3.4 Target Scenarios. Two different scenarios were utilized for simulations in this

research. The first scenario was employed for both the stochastic observability tests and the

MSOFE Monte Carlo runs. The tracker was given the proper initial conditions of the target (to

sirnilate a handoff from another tracker) and was to track a missile possessing the characteristics

and following the profile of a Minuteman II [4,5]. Over the ten second simulation period, a

nonminal intercept range of 200 km and negligible acceleration were assumed. In the MSOFE

simulations, the truth model was programmed to maintain a constant velocity equal to the average

value determined over the simulction period [5]. As with the reduced sample period, the reduced

range (from 2000 Km to 200 Km) was derived from intercept scenarios recently developed for

use at Phillips laboratory. The intent is eventually to revise the scenario modeled in the AFIT

software and compare filter performance under the new conditions.

The second scenario, used for the Monte Carlo simulations in the AFIT software and

referenced throughout this thesis, was the same as used in previous theses. An Atlas type missile

is simulated traveling at a range of 2000 km from the platform with a constant velocity. The

original intent of the runs was to complete a few simulations with the old parameters and then

eventually to update the conditions to match the first scenario. This was not done for two major

reasons. The first reason was that a direct comparison of the new filter's performance with

previous filters was desired and the second was that the new filter including pogo states was never

satisfactorily tuned to elicit its maximum performance potential. A complete description of all

initial conditions and flight parameters of the truth model is contained with the truth model

description in Chapter IH.
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2.4 Summary

This chapter presented the theoretical background required to understand the research

explained in the rest of the thesis. It briefly developed the linear Kalman filter for both

continuous and discrete-time processing, and it also presented the extended Kalman filter

modification to the update equations to allow for nonlinear measurement models to be used. The

mathematical models presented in the Kalman filter section will relate directly to the truth and

filter models described in Chapters III and IV respectively. Section three of this chapter contained

a complete description of the various coordinate frames used for the simulations. The different

coordinate frames were required in order to simulate the scenario realistically in inertial 3-space

and to transform the missile trajectory into coordinate systems useful for sensor and computer

processing. The third section also outlined the inter-relationships of the coordinate frames.

Finally, this chapter briefly summarized the pointing controller for the HEL and the two target

scenarios exploited in the thesis.
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III. Truth Model

3.1 Introduction

In order to analyze the tracking algorithms of interest successfully, they must be subjected

to as many of the dynamic variables that would be encountered in the real world as possible. The

truth model is a mathematical model derived for simulation purposes which embodies all of

pertinent states necessary to create a realistic environment in which the filter will operate [21].

In theory, an absolute truth model could be of infinite dimension. In practice, only the dominant

characteristics that will affect the system of interest need be modeled. The truth model should

be developed through thorough testing and analysis of data collected in the real world from the

measuring instruments. Shaping filters should then be developed and compared to the empirical

data to validate the model.

This chapter will present the truth filter models used for development and testing of the

elemental linear Kalman filters in the AFIT simulation. It will also cover the models used to

generate measurements for the filter updates and the detailed parameters used for the truth model

simulation (initial conditions, etc). Since the AFIT truth model has remained virtually unchanged

since the previous thesis, the portions discussing the model were taken from Chapter IV of

Herrera's thesis [14] with minor alterations.

The models used for MSOFE [6] were reduced-order versions of the model used in the

AFIT software and described in Section 3.2, that incorporated a subset of the major characteristics

desired for the observability studies. They were also implemented as continuous-time
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dynamics/discrete-time measurement models in MSOFE as opposed to the discrete-time dynamics

equations employed in the AFIT software. The truth models and filter models used for MSOFE

were identical except for the different tuning values that adjusted noise levels in the filter. The

rFcader shi •Id review the next section for an understanding of the entire truth model and refer to

Clhipter IV for the specific models used for MSOFE analyses.

3.2 Truth Dynamics Model

The essential conditions which must be generated in the AFIT truth model include the

underlying dynamic states of the target, jitter from atmospheric disturbances, bending/vibration

of the host platform, and measurement noises in the sensors. As previously noted in Chapter I,

the truth model was originally developed when only FLIR measurements were available. As a

result, the truth dynamics model defines the target in terms of the image intensity centroid, not

the missile center-of-mass. The true location of the hardbody is determined by adding a constant

centroid to center-of-mass offset (87.5 m) to the equilibrium point about which the centroid

oscillates. The system describing the target image includes the following fourteen states

[14,17,31,40]:

2 target dynamic states

6 atmospheric states

4 mechanical bending states

2 pogo oscillation states

The dynamics of the image intensity centroid are represented as positional changes in the FLIR

plane, with the centroid components xe and y, being measured in pixels from the center of the

FOV in the x and y FLIR plane directions. Referring to Figure 3.1, the position of the target

image centroid at any one time is given by:

3-2



xý = X, + * + Xb + xPcosO, (3-1)

yC = y, + y. + yb -xpSinO, (3-2)

where

xe, y, = target image intensity centroid coordinates

x,, y, = coordinate deviation due to target dynamics

xa, y. = coordinate deviation due to atmospheric jitter

xb, Yb = coordinate deviation due to bending/vibration of optical hardware

xP = coordinate deviation due to pogo oscillations along the velocity vector direction

O, = true target orientation angle

.. ..................... ............. ............. ....... ..... ....... ....... i. ... ....... .. .. .... ...i

Si. ........... .... .... .... ...... .. ...... 8 8x8 Array

... Of.Pixels

Plume Intensity Centroid-

t

Y-L a - p Plane (FUR)

Figure 3.1 Plume Intensity Function Position on FUR Image Plane
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Note the minus sign before the resolved pogo component in Equation (3-2) due to the coordinate

definition of the FLIR coordinate frame. The states x., Xb, x, x.,, y Yb, and y, comprise the output

states which are extracted from an overall state model in the form of fourteen coupled scalar

stochastic differential equations. The states x, and y, are each modeled by first-order differential

equations; x., Yb, and xP are each modeled by second-order differential equations; and x, and y. are

each modeled with third-order differential equations. These differential equations, when in state-

space format, comprise the dynamics portion of the FUR tracker truth model.

The 14-state model state vector is described by a first-order, stochiastic differential

equation given by (note the use of the capitol T subscript to denote reference to the truth model,

as opposed to a lower case t to reference variables associated with target dynamics):

It(t) = FTXT(t) + BrurQ) + GTWr(t) (3-3)

where

Fr = 14 x 14 time-invariant truth model plant matrix

x. (t) = 14-dimensional truth model state vector

BT = 14 x 2 time-invariant truth model control distribution matrix

UT (W = 2-dimensional deterministic input vector

GT = 14 x 14 noise distribution matrix (GT = 1)

WT (t) = 14-dimensio ial, white Gaussian noise process with mean and covariance

kernel statistics:

E{wr(t)} = 0

E{wrt)wr T(t + ')) = r(t)

To simulate the target dynamics model on a digital computex, the following equivalent

discrete-time solution to Equation (3-3) is given by:
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Xr(ti. 1) - Or(tQ t)XTQd) + B4dUrd(ti) + G 4Wr•(r4) (3-5)

where the state transition matrix Or (ti,:) is the solution to the differential equation:

di(t, Q = t, tt) (3-6)
dt

with the initial condition: 0. (ti, ti) = 1, (note that, for constant F,, -Or (41,) can be expressed

as 0 7,(t-t)) and

xT (t4) = 14-dimensional discrete-time truth model state vector

BU = 14 x 2 discrete-time truth model control distribution matrix

UTd (t4) = 2-dimensional discrete-time input vector

Grd = 14 x 14 discrete-time noise distribution matrix, (G,, = /)

w,, (t,) = 12-dimensional discrete time, white Gaussian noise process with mean and

covariance statistics:

E{wTd(ti)} = 0 (3-7)

t'I,
----. r ) ( ( - 8

(rtJ)wr (t,)}= Qrd r= f4 (t+,÷ - r)G7 Q7 ,Gr . - ')d' (3-8)

where QT is defined in Equation (34). The discrete-time input distribution matrix Bd is defined

as:

BU f .r(t@I.I - r)Brdr (3-9)
t't

Note that this computation assumes Ur (t) is constant over each sample period: UT (W) = UdtI) for

all t E [tE.t,• ). This input simulates a true constant velocity trajectory for the missile.

The fourteen states of the discrete-time truth model are defined in the x and y coordinate

axes of the FUR plane as:
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XFUR YFUR

I target state I target state

3 atmospheric states 3 atmospheric states

2 bending/vibration states 2 bending, ibration states

2 plume pogo siates (position and velocity

where the plume pogo states are in neither the XFUR nor YFUR direction but defined along the

velocity vetor. These states are augmented into the truth model state vector:

x,

X. (3-10)XT ff ....

Xb

x,

where

x, = 2-dimensional target dynamics state vector

x. = 6-dimensional atmospheric state vector

xb = 4-dimensional bending/vibration state vector

x = 2-dimensional plume pogo state vector

The 14 x 14 discrete-time truth model state transition matrix OT is given by:

(D, 0 0

o (kF 0 0
T ,, .... .... ....

0 0 •I• b 0

0. 0 0 P4'

where the partitions correspond to the dimensionality of the states defmeu4 above. The 14 x 2

discrete-time truth model distribution matrix Brd is given by:
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B~id[ (3-12)

where BTd is a 2 x 2 discrete-time control distribution matrix. The 14-dimensional discrete-time

truth model white Gaussian noise process wd is given by:

0

T , (3-13)

Wbd

where

wjt) = 6-dimensional discrete-time, white Gaussian noise related to atmospheric

jitter states

w(t,) = 4-dimensional discrete-time, white Gaussian noise related to bending states

w,,(t,) = 2-dimensional discrete-time, white Gaussian noie related to plume pogo

states

The block diagonal form of Equation (3-5), as seen in Equations (3-10) through (3-13), allows the

models for target dynamics, atmospheric jitter, bending/vibration, and plume pogo to be presented

separately. The following sections discuss each of the discrete state models which form the

stochastic discrete-time truth model.

3.2.1 Target Dynamics State Description. As depicted in Figure 3.2, the or-P plane (FUR

image plane) is coincident with the FLIR sensor FOV, and perpendicular to the LOS vector e,.

In the simulation, the 3-dimensional target dynamics are piojected onto the FLIR image plane, and

the position components of the target's intensity centroid are obtained from the azimuth and

elevation displacement angles (a" and P3 -, respectively). Since the target distance is simulated
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UP a - P3 Plane LOS Vector

ee

Figure 3.2 Target Centroid Image on a-0 Plane with "Pseudo" Angles

as 2,0A. ) kilometers, small angle approximations are used for measuring the angle displacements

ini the cartesian coordinate system of the FUR image plane. These "pseudo" angles, x ' and P ',

are referenced from the current LOS vector and measured in microradians. Note that the unusual

orientation of the +y,, axis in Figure 3.2 allows the positive z axis to be in the positive e,

direction (by the right-hand rule).

The linear translational coordinates, x, and y, of Equations (3-1) and (3-2), locate the

target intensity function on the FUR plane and are measured in pixels of displacement from the

center of the FUR FOV. The angular and linear measurements are related by the pixel
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proportionality constant k., which is the angular FOV of a single pixel. Presently, the value of

ko is approximately 15 microradians per pixel for long range targets [8,40].

3.2.1.1 AFIT Discrete-.T.'ne Target Dynamics. The derivation of the state space model of

the texget dynamics assumes that the azimuth and elevation rates (ax and ý ", respectively)

remain essentially constant over each sample period At. Then the discrete-time target dynamics

model is:

(+O)(At) (3-14)
(t,.d = xC(t) + _P_(_0(315

k
P([__)(__ (3-15)

ytt.)=y,(t,) - _____

Arranging these equations in state space form yields:

x,(t.1) = 4P(tj•j,I,)x,(tQ) + But(ti) (3-16)

(-17)

where

ax 'PO) = dx "/dt, measured in microradians/second and constant over the time interval

At

-(ti) = do3 7dt, measured in microradians/svcond and constant over the time interval

At

At = sample time interval, ti÷ - r1 (1/60 seconds)

k' = pixel proportionality constant (15 microradians/pixel)
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Using these iviationshlips in block form of the overall truth model, by inspection of Equation

(3-11), the upper left block is:

(b, 0(3-18)

and the upper block of Equation (3-12) is:

Bd k A (3-19)

and the input vector in Equation (3-5) is given by:

= a'( 1 ) (3-20)ur' =1. ,,)

i- niinus sign of the lower right term in Equation (3-19) is due to the difference in the y axis

ofiencation between the inertial coordinate frame and the FUR coordinate plane.

The two target dynamics states of Equation (3-10) are used to propagate the missile along

its trajectory. The formulation of the truth model target dynamics states in deterministic state

space form has two advantages. First, Equation (3-17) can be substituted back into Equation (3-5)

to form a single augmented vector differential equation that defines the truth model. Second, the

state space form allows the addition of white (or time-correlated) noise to Equation (3-17), if a

stochastic, rather than a deterministic dynamics model, is desired.

3.2.1.2 MSOFE Continuous-Time Target Dynamnics. As shown in Chapter IV, an

equivalent continuous-time dynamics constant velocity model was simulated in MSOFE by letting

the deterministic input vector of Equation (3-20) equal zero. Two velocity states (along the FLIR
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plane axes) were augmented to the state vector for a total of four states describing target

dynamics. The desired constant velocity trajectory is achieved by designing the plant matrix, F4,

in Equation (3-3) such that the target dynamics are modeled by I = v and 0 = a = 0.

3.2.2 Atmospheric Jitter Model. The model for the translational displacement of the

intensity function due to atmospheric disturbances, is based on a study by The Analytic Sciences

Corporation [311. Using power spectral density characteristics, the titmospheric jitter phenomenon

in each FLIR plane axis direction can be modeled as the output of a third-order shaping filter

driven by white Gaussian noise [31]. The Laplace domain representation of the shaping filter

transfer function is given by:

xe(s) - K i 2 (3-21)

Wo(s) (s + 01)(s + 02),

& = output of shaping filter (xýLm direction)
w. = zero-mean, scalar, unit-strength white Gaussian noise

Ko = gain, adjusted for desired atmospheric jitter rms value

o1 = break frequency, 14.14 radians/second

(02 = double-pole break frequency, 659.5 radia&sýsecond

The atmospheric jitter effects can be modeled similarly in the y. direction, where y.

would be the output of an identical shaping filter defined in Equation (3-21). The two shaping

filters are assumed to be independent of each other and can thus be augmented to form a six-state

model. The linear stochastic differential equation that describes the atmospheric jitter is given by:

1.(t = FAx(t) + G.w.(O (3-22)

where

PC = 6 x 6 time-invariant atmospheric jitter plant matrix

xo(t) = 6-dimensional atmospheric jitter state vector
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G. = 6 x 2 noise distribution matrix

w,(t) = 2-dimensional, independent, zero mean white Gaussian noise with unit

strength and independent components described as:

E(w.(t,)) = 0

1 ol (3-23)
E {~t)wT~j) - Q 8 (t) [= • J( C)

The six atmospheric states in the state vector correspond to the low frequency pole and the higher

frequency double pole in the .n~jR and the y., directions. The atmospheric jitter plant matrix is

defined in Jordan Canonical form as:

-wo 0 0 0 0 0

0 -(02 1 0 0 0

0 0 -(02 0 0 0 (3-24)
0 0 0 -( 0 0

0 0 0 0 -w', 1

0 0 0 0 0 -.

The noise distribution matrix G. is:
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(0 1 - (02)2

(CO, +- 09,)

((01 - 02) (3-25)

(CO - (02)2

((I - (02)

0(o - 2)

The equivalent discrete-time model for Equation (3-22) is of the form:

x.(ti14 ) = (4)(t,-. 1I)X.(t1) + Wd.(ti) (3-26)

The augmented six-state state transition matrix derived from the time-invariant plant matrix of

Equation (3-24) is [31]:

ca 0 0 0 0 0

0 4.22 aD.23 0 0 0

(A) 0 0 (P.33  0 0 0 (3-27)

0 0 0 (P.44 0 0

0 0 0 0 (P.55 (Pas6

0 0 0 0 0 (.66

where

D.11 = 4),44 = exp(-(o0,A)

).a22 = (D.55 = exp(-wAt)

(D.2.1 = (D,116 = At exp(-co2At)
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4D.33 = cD66 = exp(-co 2At)

At = sample time interval, ti,, - t,

The 6-dimensional, zero-mean, discrete-time, white, Gaussian noise w04(ti) has statistics defined

as:

E{wdd(t=)} 0

141 (3-28)
E(w ad(tO)WL(tO)} = Qod = (t.,-t)G.Q.G ,(t.T -r)d

The individual components of Q,• are not included here due to their length and complexity;

however the reader may refer to the software for a full description [30].

For the approximated two-state atmospheric jitter model, only a single-pole shaping filter

is used in each direction to produce the approximated PSD. The state space equations are

truncated from six to two states with only the first the break frequency, o,, ,sed in each direction.

The plant matrix in Equation (3-24) becomes a 2 x 2 with -(o, as the diagonal terms and Equation

(3-25) also becomes 2 x 2 with K=w on the diagonal.

3.2.3 Bending/Vibration Model. The mechanical bending states were added to the truth

model to account for the vibrational effects in the FUR data that occur when the sensor is

mounted on a moving, non-rigid optical platform [17]. Based on tests at the AFWL (now Phillips

Laboratory), it was concluded in previous research [17] that bending effects in both the x.. and

y•. directions can be represented by a second order shaping filter, driven by white Gaussian

noise. The Laplace domain transfer function for the bending model is:

7x(s) Kbwnh (3-29)
"W (b(S S2  + 2 ýbw. s + (1).b

3-14



where

x. = FLR plane positional offset (xFuR direction) due to mechanical bending

disturbance

Wb = zero-mean, unit strength, white Gaussian noise

Kb = gain adjustment to obtain desired rms bending output,

(Kb2 = 5 x 103 rad4/sec4)

= damping coefficient, equal to 0.15

(o,, = undamped natural frequency for bending, (( = n rad/sec)

The FLIR plane positional offset in the ym direction, Yb, is identically modeled with the

shaping filter defined in Equation (3-29). The two shaping filters are assumed to be independent

of each other and can thus be augmented to form a four-state model. The linear stochastic

differential equation that describes the bending/vibration is given by:

1,(t) = Fyvb(t) + Ghwb() (3-30)

where

Fb = 4 x 4 time-invariant bending plant matrix

xb(t) = 4-dimensional bending state vector

Gb = 4 x 2 noise distribution matrix

wb(t) = 2-dimensional, white Gaussian noise process with unit strength

components that are independent of each other:

E{wb(t)} = 0

E[wb(t)bW(t +l)) = g 1 0 (3-31)

The bending/vibration plant matrix is defined as:

3-15



0 1 0 0
2

Fb I).b -ýbwnb 0 0 (3-32)
0 0 0 0 1

0 0 -(J)2nb -2•,0•n,

The noise distribution matrix Gb is:

0 0

t, b kP 0 (3-33)
0 0

[0 On b kp

(Note that kP is the pixel proportionality constant.) The equivalent discrete-time model for

Equation (3-30) is of the form:

XbQ,+I) @(/i-l' ,)xQb(t) + Wbd(td) (3-34)

where

ObJ (D1I 0 0

0 b21 b22 0 0 (3-35)
@,A)= 0 0c~S ',JJ b34

0 0 4)b33'

L 0 0 b4 (b44

and

DbI I = (b33 = exp(-o,4)[cos((ob&) + (ab/0L,) sin(wo )]

,bl2 = Pb34 = exp(-cob4)[(I/ab) sin(w6 At)]

(1b2 I = (Ibj= eXp(_CyAO[_1 _ (Gbj(Ob) 2 sin(wkb)]

Db22 = 4)b = exp(-ot)[-cos(o(/0W) - (ab/0o) sin(oab)]

At = sample time interval, ti+,-t,

yb = real part of the root of the characteristic equation in Equation (3-29),

(oh = 0.47124 second-)
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COb = imaginary part of the root of the characteristic equation in Equation (3-29),

(cob = 3.10605 radians/second)

The 4-dimensional, discrete-time, white Gaussian noise process vector Wdb(t) has mean and

covariance statistics:

fw d(t)l = 0

,,. (3-36)
EfwbdCtd)wrd~t)} = Q•d = f" b~ti, -x)GbobGrDtrtI -,) dc

3.2.4 Plume Pogo Model. To account for the oscillatory nature of a typical missile plume

in the boost phase, a plume pogo model was developed [40]. A second-order Gauss-Markov

model was generated using physical insight, and visual observatioa of the pogo phenomenon. The

model allows for the study of the amplitude and frequency characteristics of the oscillatory nature

of the plume, and of the effect upon tracking a missile using a Kalman filter.

The transfer function of the plume pogo model is described in the Laplace domain as:

xP(s) K;_t_ _ _ _ _ (4-37)

w2 s) s 2 C ++ ,.p

where

xP = plume pogo shaping filter output along the direction of the velocity vector

wp = zero-mean, unit strength, white Gaussian noise

•p = assumed damping coefficient, (C = 0.05)

a,• nominal undamped natural frequency for pogo; assumed range is 0.1 - 10

Hertz, with a nominal value of 1.0 Hertz

KP= gain adjustment to obtain desired rms pogo amplitude determined by [40]:
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KP - 2rjý (3-38)

where

ap = desired rms pogo along ttie velocity vector

The linear stochastic differential equation that describes the plume pogo is given in state

space form as:

• t(t0) = L2.( t) + [ 2 w/t) (3-39)

where

x/t) = 2-dimensional pogo state vector composed of pogo position and velocity
states

w/t) = 1-dimensional zero-mean, white Gaussian noise with statistics:

E{w,,t)} = 0 (4~
4ý(t))(3 -40)

E{w,(t)w,(t+'r)1= Qp b(t-'); QP = 1

The equivalent discrete-time model for Equation (3-39) is of the form:

Xý(t.•) = O (t.f.t)xp(t,) + WPdQ) (3-41)

xp(ti.1) = "J_(At) I 1 .2(At) I(t + WPd (3-42)

L4)12 1(Z') (,,22(A tf)
where
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4)1t(At) C.__I exp(-C,,'o.,At)sin •.-f F , + arctan

• 12(At) =,, 1 exp(-C W At)sin o l )0- P " kw -t2, 1 (3-43)

----= % exp(- Po.,A t)sin (,)•V _C &t)F, -To
OlP22(A) 1 - exp(-CPw,,PAt~sin we,,, -CP2At + arctan{ +~ n

The 2-dimensional, discrete time, white Gaussian noise piocess w1jt 1) has mean and covariance

statistics:

EfWpd(t) =- 0

i,., (3-44)
EfwPd(ti)W_(t,) o Q fGPPG;,T(t -t)d

The individual components of Q• are not included here due to their length and cormplexity. The

interested reader is referred to the software [30J for a full description.

The 2-dimensional pogo state vector defines the position of the plume image intensity

centroid relative to the equilibrium point of oscillation, and its velocity component due to the pogo

phenomenon along the longitud~ial axis of the missile. For the simulation, it is assumed that the

velocity vector lies coincident with the longitudinal axis of the hardbody. As shown in Figure 1.6,

the plume oscillates about an equilibrium point also located on the longitudinal axis. This

equilibrium point is defined by the initial positions of the two intensity functions in the target

coordinate frame (to be discussed in Section 3.3.1), and remains at a constant distance from thL

hardbody center-of-mass throughout the simulation (the spatial relationship of the intensity
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functions can be seen in Figure 3.3 in Section 3.3.1). The crescent-shaped plume represents one

of many equal-intensity contour lines of the actual plume. The angle of attack and sideslip angle

of the missile are also assumed negligible, and have zero values for the :imulation [40].

3.3 Measurement Models

A major factor in formulating an authentic simulation is creating realistic measurements

for the Kalman filter state estimate updates. The measurements generated in a simulation are

based on prior 1,nowledge and/or physical insight into the characteristics of the sensor devices.

This knowledge not only includes what the measurement properties themselves should be for the

chosen scenario (i.e. dependent on the current state of the truth and filter model), but also any

imperfections that would exist due to background noises in the environment and the measurement

devices themselves. Two types of measurements are provided to the linear Kalman filter in this

simulation.

The first type are the "pseudo-measurements" generated by the enhanced correlation

algorithm from the raw FLIR data [41]. These two measurements describe the position of the

intensity centroid after undergoing changes due to dynamics, atmospheric jitter, bending/vibration

and pogo oscillations. In the truth model, the image intensity function is corrupted with two types

of measurement noise before bei:,,g processed by the enhanced correlation algorithm -- spatially

correlated noise from the target background, and spatially uncorrelated noise to simulate internal

FLIR sensor noises.

The second type of measurement fed to the filter is from the low energy laser (LEL).

This measurement is obtained by scanning the LEL relative to the plume centroid and recording
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any backscatter that may (or may not) result from intercepting the hardbody. Since the Kalman

filter may utilize the magnitude of speckle return, the Doppler frt~qliency spectra ttributes, or

both, the generated LEL measurement must emulate ali those properties. For this research, only

the Doppler measurement model was used. The objective in this simulation was rot to recreate

the physical processes of the laser speckle (or Doppler) return itself, but to imitate and provide

the expected quality of measurements based on those processes, the chosen scenario, and the

various scan techniques employed. Noises to account for imperfections and device limitations are

also modeled in the LEL measurements.

The following subsections describe how the measurements were generated for this

simulation, A full description of the FUR model is included es well as how LEL reflections from

the plume and hardbody are modeled. In addition, a brief review of the Doppler enect is included

to assist in understanding the section on how Doppler measurements are modeled. As with the

truth dynamics model, the measurement model was not revived from the last thesis, so the

following descriptions were transcribed from Herrera's thesis [14] with modifications made to

ensure the information is germane to this thesis.

3.3.1 FUR Model. The FUR sensor model is composed of an 8 x 8 pixel array "tracking

window" extracted from the total array of 300 x 500 pixels. The missile plume is projected onto

the FUR focal plane, with its characteristic crescent-shaped intensity function formed as the

difference of two bivariate Gaussian intensity functions, as shown in Figure 3.3. This model

depends upon knowledge of several parameters: the size of the major and minor axes of the

elliptical contours of each bivariate Gaussian function, and the orientation of the principal axes

in the FLIR image plane (the. major axis of each ellipse points along the velocity vector in the

3-21



.. .... ..... ..... ...... ..... ....... .. ..... . . .. .. . ..... .... ..... ...
: :; " )Of Pixels

i i ~ ~~~~~~~~.... .. .... . .: ' . . . .. ... . . ..

S.. .... . ........ . ... ............
Plume Intenity Centroid ~88 fa

.... ... . . ........ .. .T r e ..... lu.• .... be

0+' FM

"... .. Target, -lu=6 Formed by
Subtracting MTrailing" fromS... .... ..g ... ussian

Iiitensfly Function

a - P Plane (FUYR)

Figure 3.3 Composite Plume Intensity Function on FLIR Plane

FLIR plane). The target intensity function obtained from evaluating the resulting intensity

function is corrupted by spatially correlated and temporally uncorrelated background noise and

spatially and temporally uncorrelated internal FLIR noise, according to models of actual data taken

from a FUR sensor looking at various backgrounds [38].

For each pixel in the FLIR FOV (the 8 x 8 array "tracking window"), the target's intensity

function, correlated background noise, and FLIR internal noise are added together to produce an

intensity measurement. For the 8 rows and 8 columns of the FOV, the intensity measurement

con .ponding to the pixel in the j4 r- v and k " column at sampling time t, is given by:
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Z -tj f (1jX~yx.Y.,"(o'y,.,<t')
TP _ 'Y"ý(OYpmd ) )xdy(3-45)

+ njA(tI) + bjk(ti)

where

zJk(t,) = output of pixel in the j'" row and k " column

AP = area of one pixel

11,, l = intensity function of first and second Gaussian intensity function

respectively of Figure 3.3

x, y - coordinates of any point within pixel jk

xpe,,l, ypal = coordinates of maximum point of first Gaussian intensity function

x y,,, Yp, = coordinates of maximum point of second Gaussian intcnsity function

njk(tj) = effect of internal FLIR sensor noise on jk t' pixel

SbjA(tI) = effect of spatially correlated background noise on jk "' pixel

The sensor error, nl,(1t), is the result of thermal noise and dark current in the IR detectors (pixels).

This error is assumed to be both temporally and spatially uncorrelated [40].

The background noise, bjk(ti), was observed in the FUR data by AFWL personnel during

a tracking operation [13]. It is represented as a spatially correlated noise with radial symmetry,

with a correlation that decays exponentially. Harnly and Jensen [131 concluded that spatial

correlation can be depicted as a correlation distance of approximately two pixels in the FLIR

plane, and simulated this by maintaining non-zero correlation coefficients between each pixel and

its two closest neighbors symmetrically in all directions. In that two-pixel distance, the correlation

decays exponentially to one-tenth of its peak value.
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The. generatIon of spatially correlated white Gaussian noises is accomplished by allcwing

non-zero cross correlations between the measurement noises, bk,(t), associated with each of the

64 pixels from the 8 x 8 pixel FUR FOV. The correlated measurement noise in Equation (3-45)

is given as:

b(t) = 64-dimensional vector of spatially correlated noise with statistics:

E(bQt)}- 0 (3-46)
Efb(ti)b T(t)} = RN6

where R is a 64 x 64 measurement noise covariance matrix. This matrix describes the spatial

correlation between pixels, and is given by [131:

I r,,2  r,.3 ... r,.,

r2, 1  r,,3 ... r2,6

R=7R r3,, r3,2 ... r,,64 (3-47)

r64,1  r4,2  r,,3  ... 1

where R2 is the variance of each scalar noise and the correlation coefficients r,, are evaluated to

reflect the radially symmetric, exponentially decaying pattern. The spatially correlated background

noise b(t) is simulated as:

b(Q) = VR b'(t,) (3-48)

where

Vf = Cholesky square root

'(td = 64-dimensional vector of readily simulatjd discrete, independent white

Gaussian noise with statistics:

E(b'(tr)) 0 (3-49)
E(b1(,,)b"Tt) 16,
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3.3.2 Low-Energy Laser Speckle Reflection Model. The low-energy speckle reflection

model evolved through the work accomplished by Eden and Evans [8,9]. The model makes no

attempt to simulate the detailed physical phenomena associated with the speckle return of the

reflected laser from the plume or hardbody. Rather, the moue. simulates the reflectivity

information from the hardbody speckle return which would be derived by speckle detection

circuitry.

The low-energy laser speckle reflection model simulates a linear measurement to the

Kalian filter for estimating the offset distance from die plume intensity centroid to the hardbody

center-of-mass along the vehicle's FLIR image plane velocity vector. The first attempt to model

the laser speckle return consisted of the hardbody represented as a rectangle with a binary-valued

reflectivity function, which provided a binary indication of the hardbody whenever successful

interception by the laser beam occurred [8]. With this model, speckle reflection information was

equally obtained over the entire vehicle. This was followed by an enhanced, 3-dimensional,

reflectivity model which accounted for the realistic distribution of the laser speckle return

according to the curvature and aspect angle of the hardbody [9]. The 3-dimensional model is

employed for this research since the Doppl--r return is also a function of reflectivity [ 14,43,44,50].

The following subsections discuss the development of Evans' 3-dimensional hardbody reflectivity

model and introduce the plume reflectance model.

3.3.2.1 The Hardbody Reflectivity Model. The 3-dimensional reflectivity model was

developed by Evans [9] based upon his analysis of empirical. data obtained from the 65 8 5th Test

Group, Holloman AFB, New Mexico [10]. The data illustrates the return power (expressed in

decibels-square meters) as a function of radar cross section (RCS) from a 20 x 249 inch cylinder
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with hemispherical endcaps as it was rotated longitudinally in the plane of the radar source. (RCS

is defined as the projected area of a metal sphere which would return the same echo signal as the

target, had the sphere been substituted for the target [431.) The data showed peak values at 900

and 2700, where the cylinder was orthogonal to the line of sight, and sharp dropoffs in reflection

as the angle deviated from the orthogonal condition. The reflectivity model, shown relative to the

FLR. image plane in Figure 3.4, modifies the previous rectangular model to include 29 discrete-

weighted line segments along the length of the model. Two functions define the hardbody

reflectivity model: the cross-sectional function and the longitudinal function.

Each discrete-weighted line represents a cross-sectional reflectivity function which

duplicates the empirical data from Holloman. The refiectivity function models the curvature by

defining the strength of the reflected signal at each discrete line, where the amplitude of the

reflected signal is highest along the missile centerline and discretely tapers towards the hardbody

sides in 0. 1 meter increments. The discrete implemeii~qtaon of the cross-sectional reflectivity

function for the simulation is shown in Figure 3.5. Note the peak reflection of the cross-sectional

reflectivity function's center is represented by an arbitrary value of 50 units of reflection

magnitude [9]. The remaining line segments are scaled accordingly to match the empirical data.

The reflectivity function also yields zero reflection for those portions of the original rectangle for

from the missile centerline, so the effective reflective area of the hardbody is less than that of the

binary model.

The angle y, defined as the angle between the inertial velocity vector and the FLIR plane,

is utilized by the longitudinal reflectivity function to provide a scaling factor of the total reflection

function if the missile centerline is oriented other than normal to the FUR plane. Similar to the
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Figure 3.4 3-d Hardbody Reflectivity Model Relative to FLIR Image Plane

cross-sectional reflectivity function, the longitudinal function assigns a scaling factor to the

reflected signal based upon the angular aspect of tb'. target velocity.

Another factor in deterndning the received speckle reflection is the sensitivity level of the

low-energy laser sensor. This sensitivity is represented in the simulation as a threshold limit

below which the low-energy laser sensor cannot detect the reflection return. To illustrete the

function of the sensor sensitiv :ty factor, consider the hardbody at an aspect angle y relative to the.

FLIR image plane. In this orientation, the maximum amount of reflection is obtained in the

simulation by multiplying the peak reflection value (50 units of magnitude) by an appropriate

scaling factor [91. The sensitivity threshold function j(") is defined as a function of a threshold
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Figure 3.5 Discrete Implementation of Cross-Sectional Reflectivity Function [91

reflection magnitude m,. If a reflection (.) is less than m. the reflective output is clipped to zero

(see defining equation for p(.) in the next paragraph). Therefore, p(.) represents the sensor's

ability to discern a target's return signal [9].

The total reflectivity function is given by [9]:

a

R= p [AF(-y)j (3-50)

where

Rr = total reflectivity received by the low energy sensor

n .= number of line segments crossed by laser scan

PH = sensitivity threshold function of low-energy sensor:
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", if m, t thresholdi
P(m,) ff0 If m, < threshold]

A1 = cross-sectional reflectivity function reflection amplitude of the 0ih discrete

line segment

F(y) = longitudinal reflectivity function, where y is the angle between target v and

the a-P plane

As the hardbody traverses along its trjectory in 3-dimensional inertial space, the

projection of its motion onto the 2-dimensional FUR image plane generates the corresponding

propagation of the first two states in the truth model. Similarly, to simulate the center-of-mass

measurements in terms of FUR plane variables, the hardbody model is also projected onto the 2-

dimensional FUR plane. Referring to Figure 3.6, the geometry for projection is described by:

MLFUR = MLAWcosY (3.51)

where

MLFLuR = FUR plane projection of missile length

MLAC,,w = true missile length in pixels

y = angle between v, (velocity vector of the target) and the FLR plane

Similarly, since the hardbody longitudinal axis is assumed to be aligned with the velocity vector

(along which the offset is aligned), the offset between the hardbody and the plume is scaled by

the same factor when projected onto the FUR plane. Since the missile Is cylindrical, the

projection of the missile diameter onto the FLIR plane is equal to its diameter. Once the

projection is accomplished, the hardbody is located on the FUR plane by offsetting the

hardbody's center (midway between the projected endpoints) from the truth model intensity

centroid along the truth model velocity vector by [(Offset distance.,w)cos-y.
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Figure 3.6 Projection Geometry onto FLIR Image Plane

The subtended arc of the low-power laser beam is simulated as a rectangle with the

smaller side represented as the finite width of a dithered laser beam after it has traveled 2000

kilometers. Shown in Figure 3.7 are the ideal conditions for the laser scau. (Generally, the filter

estimates of the intensity centroid position, the orientation angle, and the velocity vector are not

equal to the truth model values.) One end of the long centerline of laser scan rectangle is locat'md

at the estimated intensity centroid, positioned at the center of the FLIR FOV. The other end of

tloe laser scan rectangle is taken as three times the truth model offset distance between the

intensity centroid and the hardbody center-of-mass (3 x 87.5 = 262.5 meters or 8.75 pixels) to

ensure the laser scan is iong enough to intercept the hardbody, despite the effects of "pogo". The
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Figure 3. Ideal Low-Energy Laser Scan

seco. ndpoint of the laser rectangle along its centerline is given as:

xp = x, + LcosOf (3-52)

yp = y, - Lsin0/

where

xP, yp = the FLIR plane coordinates of the second end of the centerline of the laser

rectangle

x<, y, = the FLIR plane intensity centroid coordinates

L = length of the laser rectangle

Of = six-state (FLIR) filter estimate of velocity orientation angle
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As mentioned earlier, the FLIR filter's imprecise centering of the inten centroid caused

inadequate hardbody illumination rates by the laser scan in the original research by Eden [8].

(The estimated velocity vector, and thus the estimated orientation angle, Of, were estimated

precisely, however.) As a result, an ad hoc sweep routine was developed, shown in .!igure 3.8,

that 6fsets the initial laser scan clockwise from the estimated velocity vector. The laser scans are

swept counterclockwise in order to assure illumination of the entire body. Evans found that,

without pogo, a 300 offset was required, and 350 with pogo applied [9].

3.3.2.2 Phone Reflectance Model. Prior to Herrera's research, the concept of illuminating

the missile hardbody with a low-energy laser and analyzing the speckle return (also called
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backscatter radiation) was predicated apoj, -- assumption that the missile plume would riot

possess any backscatter properties or possess a specldo return similar to the hardbody's, when

illuminated by a low-energy laser [141. The laser scan travels along the intensity centroid's

velocity vector until a speckle return is receivew gnifying the start of the metallic hardbody.

The scan continues along the hardbody until no backscatter exists, signaling the end of the

hardbody, and thus information is provided to calculate the center-of-mass. However,

experimentva data confirr ed the presence of plume reflectance from solid-propellant rocket motors

[2,34] which significantly alters the previous corception.

Experimental programs at the Arnold Engineering and Development Center (AEDC), in

Tennessee, have observed and measured laser backscatter radiation from the exhaust plume of a

solid-propellant rocket motor [341. The measurements of the plume's backscatter radiation were

found to be on the same order of magnitude and comparable to that of a hardbody [21, due to

aluminum particles and other substances in the plume. During the STARLAB flight experiment,

which collected plume data under actual flight conditions, a rocket booster and its exhaust plume

were "painted" by a low energy laser. Video recordings of the flight experiment showed the

randomized appearance and low-frequency oscillation of the plume's reflectance [2,3]. The

existence of plume reflectance creates an ambiguity that impedes the precision tracking necessary

to define the plume/hardbody interface. The plume reflectance causes a bias in the estimated

hardbody location, biased longitudinally toward the plume.

Since for this thesis, the Doppler measurement model was utilized instead of speckle, the

offset measurements from the LEL were assumed to be unbiased (see the next section). However,

this section has been hicluded in the thesis description for continuity and, since the bias effect is
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still implemented in the software if the speckle return model is used, it is retained as reference for

future researchers.

The purpose of the plume reflectance model s to simulate the presence of plume

backscatter radiation and its effect upon the offset measureaent. Figure 3.9 depicts the reflectance

from both the plume and hardbody, as observed in the STARLAB flight experiment. From the

viewpoint of the speckle return sensor, the plume reflectance has the effect of elongating the

apparent missile hardbody in the direction of the plume. The plume reflectance model simulates

the hardbody elongation by applying a bias to the offset measurement in the direction of the

X offsetba 
-

.. . . .. . . .. . . . . i. ! . i : .:: @ : :: : . .s C l

!i! te ty :):i~.:i!i~i'••' ".' ': :./ Hardbodmy"..." . Center-of-Mass... .[ ...
S. .. . . . . . . . . . . . . . . . . . . . ., '. . . . . ]

.. .. : ..:.:... ..+ . ..-+ ... . . .. ... . . .. .. \ .d b d
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Exhast PumeRocket Motor

Figure 3.9 Biased Offset Measurement Caused by Plume Reflectaxice
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elongation, defined as in the opposite direction of the estimated velocity vector. In the simulation,

the model first receives the offset measurement as determIneAi by the low-energy speckle reflection

model. The biased measurement, xo,,b, is formed by converting the bias into pixels, projecting

it onto the FUR plane, and subtracting it from the original ofiset measurement. The biased offset

measurement is then provided to the filter for its update, The plume reflectance model is given

by:

, [ c (3-53)x,,j,•_. = y,° cs

where

xoffjeb• = biased offset measurement due to plume speckle reflectance

X-0 1 , = offset measurement from the low-energy reflectivity model, without plume
speckle reflectance effect

b = bias value

R = range

kP = pixel proportionality constant (15 prads/pixel)

y = angle between 3-dimensional inertial space velocity vector and the FUR
image plane

The randomized nature of the plume's reflectance is modeled as a percentage of time that

appearance of the bWas occurs. A random number generator, of uniform density output, provides

the logic to turn the bias "on and off' according to the percentage selected. In correspondence

with Phillips Laboratory personnel, a bias of approximately 25-30 meters with an appearance

percentage of 90 - 95% was observed during the STARLAB flight experiment [3].

3.3.3 The Doppler Measurement Model. The Doppler measurement model simulates the

offset measurements that are obtained by exploiting the differences between hardbody and plume-

induced Doppler returns. As with the laser speckle return research of Eden and Evans, the

3-35



modeling of the actual physical properties of the Doppler phenomenon will not be attempted.

Instead, modeling efforts will entail simulating the information that would be available from

Doppler detection circuits as measurement data for the Kalman filter. The following subsections

briefly introduce and describe the basic concepts of the Doppler phenomenon, as applicable to the

properties of the hardbody and plume-ii duced Doppler returns. The treatment of the Doppler

phenomenon is not intended to be rigorous and reflects the level of understanding necessary to

appreciate the manner with which the Doppler returns are employed to generate an offset

measurement relative to the intensity centroid. For a rigorous development of the Doppler

phenomenon, the interested readee is referred to Principles and Practice of Laser-Doppler

Anemometry by Durst, F., A. Melling, and J. H. Whitelaw [7], and The Doppler Effect by Gill,

T. P. [12].

3.3.3.1 The Doppler Effect. Many define the Doppier effect as a shift in the frequency

of a wave radiated, reflected, or received by an object in moti n [43,44]. From a radar. Doppler

shifts are produ,;ed by the relative motion between the radar and the target. The radar may be a

pulsed, coherent laser beam that propagates the electromagnetii. energy to "paint" the target of

interest. If the target is in motion and illuminated by a low-energy laser, the returned signal (or

backscatter) is represented as a time-delayed, Doppler-shifted version of the transmitted signal,

wherein the amount Doppler shift is proportional to the reflecting target's range rate relative to

the laser transmitter [43,44]. A continuous transmitted signal is given as:

E, = Eocos(2nfot) (3-54)

For this lua,,.r•tted signal, the echo signal from a moving target will be [43]:

E, = k Ecos[21t(f ± f)t+•] (3-55)

where
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E0  = amplitude of transmitted signal

E, = reflected signal

k = an attenuation constant that represents losses incurred during propagation

fd = Doppler frequency shift

= transmitted frequency

S= a phase shift, dependent upon the range of detection

Figure 3.10 shows the frequency spectrum of the echo signal, shifted from the transmitted

frequency, f0, by the Doppler shift, fd. given by [43]:

*kfd = ±,-2v =. 2v, fo (3-56)

d ~C (

where

v, = relative velocity of target with respect to transmitter

4 = transmitted wavelength

c = velocity of propagation (3 x l0' m/s)

The relative velocity, v, is expressed as:

v = v sin y (3-57)

where

v = target velocity in 3-dimensional inertial space

y = angle between the target trajectory and plane perpendicular

to the laser LOS (i.e., FLIR plane); see Figure 3.6

The plus sign associated with the Doppler frequency shift applies if the distance between target

and transmitter is decreasing (approaching target), and conversely, the minus sign applies if the

distance is increasing (receding target).
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Figure 3.10 Spectra of Received Signals [43]

As shown in Figure 3.10, the frequency spectrum of a continuous reflected sinusoidal

signal appears as a straight vertical line. The scenario proposed by the Phillips Laboratory calls

for a pulsed and coherent laser beam to illuminate a ballistic boosting target [3]. Both these laser

properties have an impact upon the nature of the returned spectrum.

For illustration purposes, Figure 3.11 shows a train of independent pulses having a pulse

width (PW) of 0.001 seconds and a constant pulse repetition frequency (PRF), along with its

associated frequency spectrum. Because the pulses are "on" a fraction of the time, the amplitude

of the frequency spectrum decreases but is still centered at f,. The total power is in fact

distributed over a band of frequencies extending from 1000 Hz belowf, to 1000 Hz above it, for
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a null-to-aull bandwidth of 2 KHz. The bandwidth (i.e. spectrumn spread), is inversely

proportional to the pulse widt, and is given by [44]:

Bw. -_2 (3-58)

where

BW. -- null-to-null bandwidth

C = pulse width (sec)

By coherence is meant a consistency, or continuity, in the phase of a signal from one

pulse to the next [44]. The term + in Equation (3-55) represents the phase shift which is a

function of the range during detection. Figure 3.12 illustrates the difference between the

frequency spectrum of a coherent signal and a non-coherent signal. With non-coherent

transmission, the signal's central spectral lobe is spread over a band of frequencies. In contrast,

the spectrum associated with coherent transmission shows thn signal appearing at many points.

Its spectrum, in fact, consists of a series of evenly spaced lines, wherein the interval between the

spectral lines equals (I/PRF) [44]. Further comparison reveals that tho coherent frequency

spectrum is stronger (having a higher amplitude) than the non-coherent signal because the energy

has been concentrated into a few narrow lines. ij. addition, the envelope within which these lines

fit has the same shape ([sinx]/x]) and the same null-to-null BW (2/T) as the spectrum of the non-

coherent signal.

3.3.3.2 Hardbody Doppler Return. At a range of 2000 kilometers, the missilc hardbody

can be defined as a smooth, dense single point target. Any rotational motion of the hardbody

about its longitudinal axis is assumed much less than the hardbody's velocity, and is considered

negligible. It is further assumed that the target hardbody's velocity remains constant over the
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Figure 3.11 Pulsed Signal Frequency Spectrum [44]

duration of a transmitted pulse. With such a target, the spectrum of the return will have a

bandwidth that closely approximates (2/T), and centered about the Doppler-shifted frequency

corresponding to the range rate.

3.3.3.3 Plume Doppler Return. The case of the exhaust plume can be represented as the

situation in which numerous point targets are imaged. The plume can be described as a randomly

distributed array of point targets which are dispersed in range and velocity. The plume

particulates are small (submicron in size), nonspherical and nonhomogeneous, and their size and

spatial distribution vary strongly with the radial distance from the plume axis [14,51]. Typically,

larger particles are concentrated near the plume's symmetry axis, and in contrast to the hardbody,
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Figure 3.12 Spectra of Coherent and Non-Coherent Pulsed Signals [44]

the numerous exhaust plume particles exhibit numerous velocity orientations over the duration of

a laser pulse.

When the laser beam illuminates an infinite number of point targets, the superposition of

each particle's backscatter radiation within the laser beamwidth will form the resultant return

[50,51]. Thus, the Doppler frequency spectrum will be quite broad, due to the numerous Doppler

shifts of the numerous plume particulate velocities [3,14]. This Doppler spreading of spectral

lines arises from the fact that backscazter from a particulate will be shifted in frequency in a

manner depending on the approach or recession of the particulate. The plume experimental

programs at AEDC have observed and measured plume Doppler reflectance frequency spectrums

3-41



Amplitude

a) Doppler return Spectra
of Plume and Hardbody,
showin opposite Doppler
Shifts.

Frequency

fO'd PLUME HARDBODY

. . ... ............... b) Overlap of Spectra
when Velocity Vector is
"NormaW to Laser LOS.

Frequenc~y

Figure 3.13 Spectra of Plume and Hardbody-Induced Doppler Returns

with null-to-null BWs of 2 - 5 GHz [32]. This sharply contrasts the hardbody-induced return

whose spectrum null-to-null BW equals 2/t, with an order of magnitude in MIHz. However, one

other significant difference exists hetween the hardbody and plume-induced Doppler returns.

Generally, the velocity of the plume will be oriented 180 degrees from the hardbody',,

velocity [3,14]. This is shown, in Figure 3.13(a), where the respective Doppler frequency shifts

will always be opposite in sigi. A majurity of the observed plume particles would have a relative

radial velocity towards the tracker and the resultant return would have a negative Doppler

frequency shift. Conversely, the hardbody as shown is receding from the tracker and will thus

exhibit a positive Doppler frequency shift. Hence, by exploiting the two differences in plume and
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hardbody-induced Doppler returns, precse tracking and definition of the plumelhardbody interface

can be realized.

However, the angle y, of which the relative velocity v, is a function, has an impact uporn

the discernability between the plume and the hardbody-induced Doppler shifts. Referring to

Equation (3-57), as y approaches 00, where the plume and hardbody velocity vevtors become

orthogonal to the LOS vector, the radial velocity relative to the tracker approaches nil and no

Doppler shift is produced. Figure 3.13(b) shows that, under these circumstances, the return

13pectra of the plume and hardbody converge towards the transmitted frequency and eventually

overlap, obscuring most of the hardbody-induced Doppler return. This imperfect ability to detect

the hardbody spectrum, as distinct from the plume spectrum, will be addressed in the next section

which develops the Doppler measurement model.

The measurement modeling approach taken by this thesis is tc consider the Doppler return

of the hardbody significantly distinctive from that of the plume. The Doppler detector must be

designed to filter out the broader plume return and only pass the hardbody return, a flmction

hchievable with a Doppler matched filter design [14,43]. This vital concept signifies that the

DoPpler truth measurement model can neglect the plume's Doppler return and solely simulate the

hardbody-induced Doppler return. Although there may be instances of no apparent distinction

between the plume and hardbody spectra, these occurrences will be embodied in a probability-of

miss parameter (Pm). to be discussed later.

Since Doppler informatioa is obtainable from backscatter radiation, which includes the

speckle return [43,441, the 3-d hardbody reflectivity model is utilized in this modeling approach.

However, in contrast to the laser speckle retiur' measurement model, the biasing effect caused by
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the plume's reflectance is no longer applicable and is not incorporated into the Doppler

measurement model. As a result, the center-of-mass measurement and offset measurement

generated by the Doppler measurement model will simulate the true offset measurement, Xo•,,, for

the filter.

3.3.3.4 Doppler Measurement Noises. According to Herrera, in a study sponsored by

the Phillips Laboratory, Dr. Paul McMaanmon investigated feasible and implementable

wavelengths to illuminate the plume and hardbody, while meeting the space tracking scenario

requirements [14]. His choice of wavelengthis, based upon ranges, power requirements, hardbody

temperatures, and tracking accuracies, range from 0.53 to 15 pm. For this study, the shortest

wavelength 0.53 pm was selected for use in sensitivity analysis. The tracking inaccuracies

associated with this wavelength is adopted in the Doppler measurement model to corrupt the offset

measurements realistically.

The tracking accuracy for a laser beam is a function of the amount of power, or

amplitude, of the return signal. The return signal, in turn, is dependent upon several variables,

among which are the target's radar cross section (RCS) and the location of the target in the laser

beam [14,43,441. A target ideally located in the center of the laser beam reflects the maximum

return signal (i.e., optimum signal-to-noise ratio, SNR). If the target falls off to the side of the

beam's center, then less energy hits the target. The degree of tracking accuracy then becomes a

question of, how far off to the side can a target be to reflect the signal at an acceptable level?
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Dr. McManamon addressed this issue [ 14] by first defining the acceptable beam diffraction

limit as the angle within the 3 db power points of the laser beam. He defines the diffraction limit

as:

3 = 1.08• (3-59)

where

0
3db = half angle defined from beam center to half-power points, in radians

X = wavelength, in meters

d - radar aperture, in meters

One then determines the acceptable level of signal loss within the 0
3db limits. In Dr.

McManamon's assessment, a 10% loss can be tolerated, and he determined that this loss is

reflected by decreasing the diffraction limit by a factor of 2.667 [14]. Equation (3-59) yields:

03db (3-60)OB=2.66--"

where

0B = allowed diffraction limit for 10% signal loss

The measurement noise for the Doppler measurement model thus consists of the tracking

angle errors, in pixels, as a function of the diffraction limited beam and acceptable signal-to-noise

ratio (SNR). Inasmuch as SNR is a design parameter, Herrera's study [14] included the following

values of SNR for the sensitivity analysis: 10, 8, 6, and 4. The relationship is given as [14]:

or = 0 1 1 (3-61)

where

OT = rms tracking angle errors in pixels

=Q = beam diffraction limit
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SNR = signal-to-noise ratio

kP = pixel proportionality constant, 15 prads/pixel

In addition to providing the offset measurement, the Doppler measurement model also

simulates a return signal probability-of-miss, P,. The probability-of-miss encompasses two cases.

First, the probability-of-miss takes into account the situation in which the hardbody is illuminated

by the low-energy laser, but the return is not detected due to attenuation of the returning signal

as it propagates the 2000 kilometer range, beam.-bending as a result of atmospheric distortions (the

intended location of the laser scan should have illuminated the target, but beniing of the beam

resulted in no intersection with the target); or due to signal losses (i.e., high sensor sensitivity

threshold; refer to Section 3.3.2.1) within the receiving equipment. In this case, a loss of speckle

information would also result. Secondly, in Equation (3-51), it was shown that the relative

velocity is a function of y, such that no Doppler shift occurs if the target's velocity is normal to

the transmitter's LOS. Hence, as shown in Figure 3.13, as y approaches 00, both the broadened

plume-induced Doppler spectrum and hardbody-induced spectrum will converge and overlap. The

two spectra will become more indistinguishable, perhaps rendering detection of the hardbody's

Doppler return impossible.

The simulation of the probability-of-miss is similar to the technique employed by the

plume reflectance model. A random number generator, with a uniformly distributed output, also

provides the logic to turn the hardbody laser backscatter "on and off." Figure 3.14 shows the

detection characteristic for a known signal. The graph present a set of j~arametric curves that give

the probability-of-detection, Pd, as functions of peak signal-to-noise ratio (SNR) for various values

of probability-of-false alarm, P,' P/fa is defined as falsely indicating the presence of a return signal

when none exists [43]. Both Pd and P10 are specified by the system requirements; the radar
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designer computes the probability-of-false alarm and, from Figure 3.14, determines the minimum

detectable signal. A range of 70 - 99 percent probability-of-detection is representative of current

Doppler detection equipment capabilities with the tracking scenario [14].

3.4 Truth Model Parameters

The discussions in the previous sections introduced some of the truth model parameters

used in the simulation. The purpose of this section is to provide a consolidated listing of the

parameters and initial conditions of the truth model.

3.4.1 Target Trajectory Initial Conditions. The initial conditions of the target inertial

position, velocity, and velocity vector orientation angle, 8, are as follows:

e, = 27,(K"1J meters

ex = 100,000 meters

e, = 2,000,000 meters

. = -2500 meters/sec

v, = 4330 meters/sec

v, = 0 meters/sec

0 = 60'

3.4.2 Target Model, Dimensions, and Orientation. The target plume consists of a

crescent-shaped intensity function formed from the difference of two bivariate Gaussian intensity

functions. Each Gaussian function is modeled with elliptical constant-intensity loci with an aspect

ratio of 1.5, and a semi-minor axis of one. For this thesis, Evans' 3-dimensional reflectivity

model is used to model the hardbody. The hardbody length is 40 meters (1.33 pixels) and 3

meters (0.1 pixels) wide. The offs,- distance of the hardbody center-of-mass from the intensity

centroid is 87.5 meters (2.92 pixels), a carryover from the previous thesis. For the simulation. ie
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intensity centroid and the hardbody longitudinal axis are aligned with the velocity vector, and the

hardbody has zero sideslip and zero angle-of-attack.

3.4.3 Intensity Functions. The two Gaussian bivariate intensity functions, shown in

Figure 3.3, are certered at 65 and 110 meters behind the missile. Each intensity function has a

maximum intensity value of 20 intensity units.

3.4.4 Atmospheric Jitter. The variance and mean squ&:ed value for the atmospheric jitter

in both FLIR directions is 0.2 pixels2.

3.4-5 Bending/Vibration. From Equation (3-29), the values for the second-o'0.e,

bending/vibration model are as follows:

Kb2  = 5 x 10"l rad4/sec4

Cb = 0.15

(o,,b = n rad/sec

3.4.6 Plume Pogo Characteristics. The size of the plume is on the order of 30 times the

diameter of the missile at the altitudes of interest. The values below represent values of pogo

oscillation as determined in previous research [401.

pogo oscillation = 0.1 - 10 Hz (nominal is 1 Hz)

pogo rms = 0.0112 - 1.120 pixels (nominal is 0.112
pixels)

For this research, the elemental filter in the AFIT software was tested against nominal conditions.

3.4.7 Spatially Correlated Background Noise. The rms value of v,,, the summed effect

of the spatially correlated background noise bj, and the FLIR sensor noise njk. of Equation (3-45),

equals one. This produces a SNR of 20.
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3.4.8 Low-Energy Laser Speckle Return Measurement Dimensions. The low-energy scan

is represented as a rectangle at the hardbody target. The scan length is 262.5 meters (8.75 pixels),

which is three timc. the true model center-of-mass offset distance, and the scan width is 0. 1

meters. The measurement noise associated with the speckle return was obtained by taking 1% of

the hardbody's length, and converting to pixels, giving a variance of 0.000178 pixels' [9].

3.4.9 r'lume Reflectance Model. From correspondence with Phillips Laboratory pexsonnel

[3], the bias utilized by the plume reflectance model is approximately 25 - 30 meters and appears

90 - 95% while the plume is illuminated during the boost phase. For the simulation, nominal

values for the bias and rate of appearance are set at 25 meters and 90%, respectively.

3.4.10 Low-Energy Doppler Return Measurement Dimensions. The Doppler measurement

noise rms tracking errors are functions of wavelength, radar aperture, and SNR. The previous

thesis studied filter performance dependent upon the wavelength values of .53pm, 1.06 pim,

2.011pm, 4pjm, 6pm, 8pm, and 10.5pm, with SNR values of 10, 8, 6, and 4, and probability-of-miss

P,, values of 0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.20, and 0.30. Since the purpose of this

thesis was to incorporate pogo into the filter, the filter was givcn th(. benefit of the best possible

Doppler measurements throughout the simulation. Therefore the conditions were set for a

wavelength of .53pm, a SNR of 10 and a P,, value of 0.01. The radar aperture d of Equation (3-

59) of .5 meters was carried over from the previous thesis.

3.4.11 Hardbody Reflectivity Measurement Model. The function p(), in Equation (3-50),

represents the sensitivity threshold of the low-energy laser return sensor. The threshold must be

less than the magnitude of reflection, in, (scaled according to the aspect angle y), to detect the

return from the hardbody. In the simulation, the value of the threshold is set to 0.0. This was
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to allow reception of measurements If any backscatter was received at all (perfect LEL receiving

equipment).

3.5 Summary

This chapter presented the mathematical equations used to model the true environment.

The truth model contains 14 states describing translational motion of the centroid in the FLIR

plane due to target dynamics, atmospheric disturbances, bending/vibration of the platform and

optics, and the pogo effect of the plume. The truth system is implemented in the ART software

using the discrete-time dynamics/discrete-time measurement models presented in Section 3.2, and

the continuous dynamics equations are utilized in the MSOFE simulations.

Section 3.3 delineated how the measurements are generated for the tracking scenario. The

raw FLIR measurements are simulated by creating a composite plume intensity function on the

64-pixel array (the FOV) and then corrupting it with noise. The array data is then processed

through the enhanced correlation algorithm to produce translational offsets of the centroid for the

linear Kalman filter update. This section also outlined how the 3-dimensional missile hardbody

is projected onto the FLIR plane and how the reflectivity functlon is determined based on scenario

geometry. Finally, the. use of the. laser backscatter to formulate the Doppler measurement is also

depicted. The same reflectivity model is used, but measurements are corrupted with rms angle

tracking errors associated with a specific wavelength, radar aperture, ard SNR, and there is no

bias as there was in the speckle return measurements.
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IV. Filter Models

4.1 Introduction

This chapter presents the filter dynamics and measurement models used for this thesis.

All the structures described are reduced-order, simplified versions of the truth model. The

dynamics model is separated into individual dynamics models for target dynamics, atmospheric

disturbances affecting the plume intensity centroid location on the FUR plane, and pogo affecting

oscillation of the intensity centroid relative to the hardbody center-of-mass. Since the plant matrix

(and corresponding discrete-time state transition matrix) and other matrices that form the models

are of a block-diagonal structure, the various filters used in the MSOFE and AFIT software

simulations can be assembled by including the portions associated with the desired states.

Chapters V and VI describe the states that each individual filter configuration includes. This

chapter also includes a description of the enhanced correlation algorithm which delivers "pseudo-

measurements" of image intensity centroid offsets in the FUR plane to the linear Kalman filter.

Three items of import should be remembered while reading the chapter. First, the target

dynamics model for the filters differs from the truth model in that the deterministic driving input

is zero. The filter models have four target dynamics states, with the velocity states being modeled

as constants, and thus the derivatives of these states are set to zero (plus pseudonoise for filter

tuning purposes). In contrast, there are only two position states in the truth model, driven by

known (simulated) constant velocity values. The second noteworthy item is that the MSOFE filter

models only incorporate FUR measurements, and therefore do not deliver hardbody center-of-
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mass coordinates. Recall that the MSOFE simulations were only performed to gain Insight Into

observability difficulties, so none of those simplified models incorporate the centroid/center-of-

mass offset meastrement. The third important item to remember Is that the target dynamics states

of the AFIT filter model describe the hardbody center-of-mass, whereas target dynamics states of

the truth model and MSOFE models (and previous ART FUR filter models [8,9,14,31,40,41])

describe the plume Intensity centroid. This difference from previous research is because there is

no separation of centroid location estimation and offset estimation, and all states have been

combined into a single filter. Therefore, there is no "FLIR filter" and "center-of-mass offset filter"

as in the previous three theses [8,9,14].

The ART software simulation filter model contains nine states (all four target dynamics

states, a two-state approximated atmospheric jitter model, two pogo states, and the offset state).

In the simulation, the filter performs an update based on the FLIR measurements. The updated

position of the estimated location ot the centroid is then used as the initial point of the laser

scanning routine. The laser is swept in relation to the updated velocity vector to obtain an offset

measurement via the Doppler return (as described in Section 3.3). The filter is then updated from

the LEL measurement and the state vector is estimated for the next sample period.

4.2 Dynamics Models

The elemental AFIT filter employed in this study is a single nine-state filter combining

the models that have been developed by ARIT students over thirteen years of research

[8,13,14,31,33,40,41]. The filter consists of two hardbody center-of-mass position states, two

hardbody velocity states, two atmospheric jitter position states (affecting centroid location in the

FLIR plane), two pogo oscillation states (affecting centroid location relative to hardbody), and a
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centroid/center-of-mass offset state. The observability study filters used varying combinations of

the following states:

S4 or 6 target dynamics states (position, velocity, acceleration of centroid in x

and y directions)

'2 or 6 atmospheric jitter centroid position states

2 pogo states (offset from centroid equilibrium point and velocity)

The state vector for the desired filter can be assembled by including the required states

from the following vector:

x =x, y, v. vq a, :x. y. •x,, vp x. (4-1)

where

x, = x component of target position (azimuth), relative to center of FOV *

y, = y component of target position (elevation), relative to center of FOV

v, = x component of target velocity *

vy = y component of target velocity *

a, = x component of centroid acceleration (if included in model)

a, = y component of centroid acceleration (if included in model)

xa = x component of atmospheric jitter (1 or 3 states)

y. = y component of atmospheric jitter (I or 3 states)

x. = offset (along velocity vector) of centroid from equilibrium point

v. = velocity (along velocity vector) of pogo oscillation

xo = offset between centroid cquilibriu'n point and center-of-mass

• Note: The target is considered to be the missile center-of-mass for the elemental filter; it's the

centroid for all others.
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Each state in Equation (4-1) is coordinatized in the a-f (FLIR) plane of Section 2.3.1.4.

For the observability gramlan studies (the only models that included acceleration states) the target

acceleration is represented as an exponentially time-correlated first order Gauss-Markov process

(40]. A comparison between the filter model presented here and the fourteen-state truth model

described earlier in Chapter III reveals the extent of state reduction. Note that the atmospheric

jitter model can be reduced from the six states defined in the truth model in Chapter III to two

states. The effect of the higher frequency double pole in each FUR axis direction is negilgible

and is intentionally disregarded in the elemental filter to reduce the filter order [38]. Since the

full six-state jitter model is the same as the one employed for the truth model, the two state

approximated model will be presented here. Furthermore, the bending/vibration states defined in

Section 3.2.3 are similarly excluded since past research found no significant degradation in filter

performance without these states [17]. The pogo states defined in Section 3.2.4 are modeled

identically to the truth model with the exception of scaling noise strengths for tuning purposes.

Finally, the offset state was only included in the ART elemental filter. When it is included, the

definition of the target dynamics states (but not the mathematical dynamics model) changes from

centroid location to the center-of-mass location. As will be seen in Section 4.3, the measurement

model does change slightly with this alteration.

The filter model is described by the time-invariant, linear stochastic differential equation

[21]:

1 Q) = Fx(t) + G w(t) (4-2)

where
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F = time-invariant system (plant) matrix

x(t) . n-dimensional filter state vector

G = n x m time-invariant noise distribution matrix

w(t) = m-dimensional, white Gaussian noise process with independent components,

and mean and covariance kernel statistics:

Efw()} = 0 (4-3)

E{w(t)w(t + = Q 5(-)

The filter state estimate and error covariance matrix are propagated forward to the next

measurement update using the following discrete-time filter propagution equations [21]:

()= ",(At(,) (4-4)

P(lt(+) = MP(At)P(t(÷)cIr(At) + Qd (45)

where

I(tj) = filter estimate of the n-dimensional state vector

4(At) = n x n time-invariant state transition matrix for propagation over the sample

period: At = t. + I - tj

P(t4) = n x n filter covariance matrix

(ti-) = time instant before measurement is incorporated into the estimate at

time t,

(ti+) = time instant after measurement is incorporated into the estimate at

time t,

(I = m x m filter dynamics discrete noise covariance given by:

Qd = J@(t•.I- )GQGTrC1(t,÷.,- )dt (4-6)

The components of Equations (4-2),(4-4) and (4-5) associated with each state are described in the

next four sections.
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4.2.1 Target Dynamics Model. Two separate dynamics models were used in this research.

In the full six-state model the target acceleration is modeled as an exponentially time-correlated

first order Gauss-Markov process. The acceleration model was not ever used in Monte Carlo

analysis for this research. Since it was only used for the stochastic observability gramian models,

and results were inconclusive (see Chapter V), it is not specified here. The model used for the

observability gramian analysis was identical to the one detailed in Rizzo's thesis [401, so the

interested reader is referred there for a full description.

The MSOFE and elemental filter models used a four-state model to describe target

dynamics. This model is represents the velocicy states as random constants plus noise [21]. The

time-invariant continuous-time dynamics system matrix F, is given by:

0 0 0 1 (4-7)0t 0O0O0

0000

The noise distribution matrix G, is:

"0 0

Go=[0 0 (4-8)
G=1 0

-0 1

The strength of the white Gaussian noise w,, given by Q,, is:

6(4-9)
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The time invariant target dynamics state transition matrix ), (at) is given by:

1 0 At 0

0 1 0 At (4-10)0,•)--0 0 1 0

LO0 0 1

The filter dynamics discrete noise covariance Qd, is given by:

I At 0 lAt2 0

3 2

0 lA3 0 -At2
3 2(4-11)

1At2 0 At 0
2

0 .. At2 0 At

4.2.2 Atmospheric Disturbance Model. The atmospheric jitter model describes the motion

of the plume image in the FUR plane due to atmospheric disturbances (refraction variations from

moisture, turbulence, thermal variation, etc.). The full six-state model developed by the Analytic

Sciences Corporation is introduced in Section 3.2.2. This section presents an approximated model

that implements a first-order Gauss Markov white noise process to simulate jitter along each FUR

plane axis. The time-invariant system matrix F. of the continuous-time dynamics model of

Equation (4-2) is:

F -[a 0 ] (4-12)

where

Co. - atmospheric jitter break frequency, 14.14 rad/sec
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The noise distribution matrix G. is:

G.[1 0(4-13)o=0 1

The strength of the white Gauisian noise we, given by Q., is:

2a2 0

S(4-14)
0 J

where

a.2 = variance and mean-squared value for the atmospheric jitter process

- = correlation time constant for atmospheric jiter process (r. = 1/6)

The time invariant target dynamics state transition matrix (b, (At) is given by:

(A exp(-wooAt) 0 1 (4-15)

( 0 exp(-wOoAt)

The filter dynamics noise covariance Q,. is given by:

[qd.1 (4-16)Q d.o 0 q 22d.

where

qd.aI = 1 - exp(-L ](A1'-'-'• )(4-17)

q d ,2 2  = 'U 2 [ i e x p ( A t))

In the MSOFE simulations, the atmospheric jittei variance and K, (truth model gain

adjustment from Section 3.2.2) were initially adjusted to yield a process noise strength in both the
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truth and filter models equivalent to .2f=0.2. The dynamics noise parameter values for the filter

were then adjusted during the tuning process.

4.2.3 Pogo Dynmnics Model. The plume pogo dynamics model implemented in all filters

was identical to the model described in Section 3.2.4. The time-invariant system matrix FP is

given by:

F2[ 0 ] (4-18)

w1 e

(opf = undamped natural pogo nequency (0.1 - 10 Hz, 1 Hz nominal)

clp = filter damping coefficient chosen to be 0.05 [40]

The noise distribution matrix G. is:

0 ] (4-19)

and the white Gaussian noise wp, given by Q., is of unit strength:

Q, = l (4-20)

The time invariant target dynamics state transition matrix IP (At) is given by:

4P(A ) =[ 4p,,(At) %,7(At) ] (4-21)

(t= W(A t) 0 22(A t)

and the scalar elements of DD (At) are the same as given in Equation (3-43), Section 3.2.4. The

filter dynamics noise covariance Q,• is not included here due to its extreme length and the

complexity of its elements. The interested reader is referred to the software for a complete

description of this matrix.
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4.2.4 Centroid Equilibriwn Point/Center-of-Mass Offset Model. In previous theses

[8,9,14], the measurement determined from the LEL (by either speckle return or Doppler spectra

of the plume and hardbody) was processed in an independent center-of-mass offset filter. The

estimate from that filter was then added to a FUR filter that estimated the position of the centroid

in order to obtain center-of-mass position. Since pogo was not included in the filter models, the

offset between the center-of-mass and the intensity centroid was modeled as a constant. For this

thesis, the same dynamics model is used, but the offset state is augmented to the previous models

to form a single nine-state AFIT elemental filter. The constant offset state describes the distance

between the equilibrium po. &.' it which the plume pogos. The offset is modeled as a bias.

Equations (4-2), (4-4), and (4-5) &;e still applicable but are expressed in scalar form since there

is only a single state. The bias is modeled as a simple integrator, with driving pseudo-noise for

filter tuning purposes.

The elements of the linear, time-invariant stochastic differential equation are:

F. 0

G = time-invariant noise distribution matrix, equal to unity

w. (t) = white Gaussian noise process, independent of the noises driving the target
dynamics and atmospheric jitter models, with mean and covariance kernel
statistics:

E~w0 (t1 = 0 (4-22)

E{wo (t)wQ (t + r)} = Q. 6(c)

and 1. = I.

The elements of the equivalent discrete-time filter propagation Equations (4-4) and (4-5)

are given by:
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(b, (At) = time-invariant state transition matrix, equal to unity

Qdo = filter dynamics noise variance given by equal to Q, At

4.3 Measurement Models

This section discusses the filter measurement models implemented for this thesis. The

first subsection explains how the raw FLIR data is processed through an enhanced correlation

algorithm. By use of templates, the algorithm generates "pseudo-measurements" for the linear

Kalman filter. The linear and non-linear update functions employed for the Kalman filters are also

presented. Finally, the last subsection describes the measurement model used in conjunction with

the low-energy laser measurements.

4.3.1 FLIR Measurement Model. Measurements of the intensity centroid's position are

generated by an enhanced con'elator algorithm, shown in Figure 4.1, developed by Rogers (27,41].

Unlike the standard correlator tracker that correlates the current FUR data frame with the previous

data frame, this enhanced correlator algorithm correlates the current FLIR data frame with a

template that represents an estimat of the target plume's intensity function. "Psuedo-

measurements" of the centroid's position offsets are produced by this correlator, and since the

"pseudo-measurements" are of a nonharsh nonlinearity with respect to the states being estimated,

this tracker uses a nearly linear Kalman filter. Because the enhanced correlator algorithm and the

template generation have not changed, the next two sections describing their operation are

reproduced from the previous thesis with slight modifications [14].
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Template Generation

UPdate State Estimate
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Input Pime s-- S hin TemplateLAray TShift ofData
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Kalman Filter
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Results of "Y d(ti+l Controlle
PropagationL

Figure 4.1 linear Kalman Filter/Enhanced Correlator Algorithm

4.3.1.1 Enhanced Correlator Algorithm. The algorithm presented here was developed as

an alternative to an earlier 64-dimensional, nonlinear measurement model. Previously, an

extended Kalman filter processed raw FUR measurement data from a standard FLIR sensor, with

no correlation algorithm utilized at all [311. With the enhanced correlator algorithm, a nearly

linear Kalman filter is employed since the output measurements from the correlation algorithm are

2-d mensional position measurements that are nonharsh nonlinear functions of the states to be

estimated. As will be seen in later in the section, the nonlinearity is a sinusoidal function caused

by the introduction of the llume pogo effect into the model. The. sinusoidal function is a mild

nonlinearity in comparison the extended Kalman filter model required to process raw FUR
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data. This enhanced correlator/linear Kalman filter configuration performed as well as the

extended Kalman filter with respect to rms tracking errors and further provideO. a reduction in

computational loading. The "enhancement" occurs in the following manner [41]:

1. The most current FUR data is correlated with a template (which is an estimate of the

target's intensity function), instead of with the previous FLIR data frame.

2. Instead of outputting the peak of the correlation function, a technique known as

"thresholding" is used along with a simple center-of-mass computation. The enhanced

correlator outputs the center-of-mass of the portion of the correlation function that is

greater than some predetermined lower bound. Consequently, the enhanced correlator

has no difficulty distinguishing global peaks from local peaks, as do many conventional

"peak-finding" correlation algorithms.

3. The FLIR/laser pointing commands are generated via the Kalman filter propagation cycle

instead of by the "raw measurement" output of a standard correlation algorithm.

5. The Kalman filter estimate, I(Q"), is used to center the template, so that the offsets seen

in the enhanced correlator algorithm should be smaller than those visible in the

conventional correlator. This increases the amount of "overlap" between the actual FLIR

data and the stored template, and thus improves performance.

Referring back to Figure 4.1, the enhanced correlation algorithm uses the 8 x 8 array of

target intensities obtained by the FUR measurement, to establish a 64-element shape function

from the target plume intensity profile (Section 3.3.1). The intensity functions are centered on

the FLIR plane by translational shifts using centroid offset estimates from .c(t,'), using the "shifting
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property" of the Fourier Transform, where negating phase shifts are applied in the spatial

frequency domain to accomplish a translational shift in the original domain. Rather than perform

the difficult correlation in the time domain, the Fourier domain allows one to apply

straightforward multiplication to implement the "translational shift" of the intensity functions and

eventual correlation with the template. Exponential smoothing is then used to average the result

with previously centered images to yield an updated template. The current FLIR data Is then

correlated against the template of the previously stored shape function that has been centered on

the FLIR Image plane. The outputs of the algorithm are two linear offsets, x, and y, as shown in

Equations (3-1) and (3-2), that yield the highest correlation of the current data with the template.

These "pseudo-measurements" are then fed to the linear FLIR Kalman filter for its update. The

filter provides the updated estimate, 1t,+), used to center the FLIR intensity profile to be included

in the template generation for the next measurement.

4.3.1.2 Template Generation. The template reconstructs the shape, size, and location of

the intensity centroid using the raw noise-corrupted FLIR measurements. ' template generation

begins with an input of a FLIR frame of data to the enhanced correlator algorithm of Figure 4.1.

Using the "shifting" property of the fast Fourier transform (FF1), which states that a translational

shift in the spatial domain is equivalent to a linear phase shift in the frequency domain, the

required phase shift is computed by:

F{g(x - x uf, y - yshi)) = G(f,, fY)exp(-j2n(J" • xo, + fy ' y~h)) (4-23)
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where

F{,1 - Fourier transform operator

g(x,y) w 2-dimensional spatial data array

G(f,f,) -Fjg(x~y))

ff w " spatial frequencies

The Fourier transform is implemented in the simulation software using the Cooley-Tukey

algorithm [41]. The targr.t plume intensity shape function is "centered on the FLIR plane" by

phase shifting the transformed function an amount equal to:

X =,o(tj) - 1,0t) + . Qj,) + 1, t:j)cosG, (4-24)

Y,hp(t') = 9,(t,) + 9j(t') - I P(t,+)sinO/

where k, S,, 1, ,,, and ., are the state estimates defined in Equation (4-1), and Of is the filter's

estimate of the velocity vector angle in the FLIR plane. For the phase shifting function, the target

dynamics states (denoted by subscript t), always refer to the centroid center-of-intensity. In the

AFIT elemental filter, the target dynaiaics states of Equation (4-1), refer to the hardbody center-

of-mass, so the estimates used in Equation (4-24) are calculated by subtracting the filter's

estimated offset from those states to obtain 1, and 9,. Once the data is centered on the FLIR

plane, it is incorporated into an updated template for the next sample period. In the simulation,

the Kalman filter's first update cycle is bypassed to form the initial template.

The template is generated by averaging the N most recent centered intensity functions

observed by the FUR sensor. The averaging process tends to accentuate the target intensity

function and attenuate the corrupting background and FLIR noises. The memory size N is chosen

according to how rapidly the shape functions change, i.e., highly dynamic intensity functions

require small values of N, while slowly varying functions nse large N values. Typically, a true
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finite memory averager would require a large computer memory [22], However, the enhanced

correlator algorithm circumvents the memory storage Issue by incorporating an "exponential

smoothing" technique to approximate the averaging. This technique has properties similar to finite

memory averaging, but with the advantage of requiring only the storage of a single FUR frame

of data. The template is maintained by the exponential smoothing algorithm given by:

0d,) - l,) + (1 - Y)f(t,.,) (4-25)

where

(ti) -= "smoothed estimate" (template) of the target's intensity function

10i ) = "raw" intensity function from the current FUR data frame

y = smoothing constant: 0 -< y 1

The smootirng constant y is comparable to the value selected for N. From Equation (4-25), It can

be seen that large values of y' emphasize the current data frame and correspond to small values

of N. Based on previous studies [19,45], a smoothing constant of y = 0.1 is used for this thesis.

A reinitialization algorithm is used once after the first ten sar.le periods (although it

could be called periodically thereafter as well. in actual implementation). Once the template is

computed, its cent-oid is calculated and shifted to the center of field of view for the template, thus

,Aliminating any biases. It is this template which is now stored and correlated with the next FUR

data to prodticz the "pseudo-measurements."

4.3.1.3 "Pseudo-Measurements". The template serves as the best estimate of the shape

of the target p!urne inmensity function prior to ,eceiving a new FLIR data frame. The cross-

correlation of the incoming FLIR data with th,. template provides the posItion offsets from Jie
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center of the FOV to the centroid of the target intensity image. The cross-correlation is computed

by taking the inverse fast Fourier transform (IFFI) of the equation (41]:

F{g(xy) * 1(x,y)} - G( f,, fy)L 0( f,, fy) (4-26)

where

Ff{} - Fourier transform operator

g(x,y) = measured target intensity function of the current FUR data frame

1(x,y) = expected target plume intensity function (i.e., template)

g(x,y) * 1(xy) = cross-correlation of g(x,y) and 1(x~y)

G(f,) = Fig(x~y))

L*(f,,fy) = complex conjugate of Fit (xy)}

After tho IFFT is accomplished, the values of the correlation function, g(x v) * 1(x,y), are modified

such that any value less than 0.3 of the function's maximum value is set to zero 119,37]. This

"thresholding" technique is used to eliminate false peaks in the correlation function that occur due

to noise and other effects. As shown earlier in Figure 4.1, the output of the image correlation is

the offset of the "thresholded" FLIR intensity centroid from the center of the FLIR FOV. This

offset is assumed to be the result of the summed effects of target dynamics, atmospheric jitter, the

pogo effect, and measurement noise.

If the filter only receives FUR measurements and therefore only tracks the plume centroid

(i.e. no LEL measurements), as was the case with the "FUR filter" used in previous theses

18,9.14] and the filter implemented in MSOFE for this thesis, then the x- and y-components of the

offsets are the pseudo-measurements provided to the Kalman filter. In this case the target

dynamic states describe the motion of the centroid. For the following development, an eight-state

filter used in MSOFE simulations will serve as an example. The state vector x of Equation (4-1)

consists of 4 target dynamics, 2 atmospheric jitter (one state per axis) and 2 pogo states.
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The offsets from the enhanced correlator are expressed in terms of Equation (4-1) as:

X, ,, • -V. + 1,CosO/ o f+ (4-27)

Y"., - y, + y, - Xpsinef + Vf2

where

cone , + * (4-28)

,•e: -_ VY2

and 0, is the angle between the velocity vector and the x-axis of the FLIR plane. These two

measurements can be represented in state form as:

z(t1) = h,[xf(t,), ti] + vf(t1) (4-29)

where

z(t = I[ x0 ,:tj), yOoffti) ]T; measured in pixels

hAxtQ,t] = nonlinear measurement function vector given by Equation
(4-27)

xf(t) = state vector of Equation (4-1)

v(t)= 2-dimensional, discrete-time, white Gaussian measurement

noise (in pixels) with statistics:

E(v(t,)} = 0

E fv 1)v (t,) } R t, { t, (4-30)

Note that because of the pogo states being defined along the velocity vector and being included

in the output equations, this measurement model is nonlinear in the filter states and the extended
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Kalman filter update cycle described in Chapter II (Equations (2-26) and (2-27)) must be applied.

The equations are [21]:

KQI,) oPs(,jm•HfTHPjQ(, )Hfl + Rfl-

•If0,4) "•If() K•(t){ z(t) - h,[ t(t,), ,} (4-31)

P1 Q(t,) . PQ(t[) - K(,,)Hf P(t,)

where

Ktd -= 8 x 2 filter gain matrix

P Ot) = 8 x 8 filter covariance matrix

hJxA),tA] = 2-dimensional non-linear measurement function; Equation (4-29)

Hf = linearized measoirement matrix; Equation (2-26)

Rf = 2 x 2 measurement noise covariance matrix; Equation (4-34)

If (ti) = 8-dimensional estimated state vector; Equation (4-1)

z(ti) = 2-dimensional measurement vector; Equation (4-29)

(ti) = time instant immediately before measurements are incorporated at

time t,

(t1÷) = time instant immediately after measurements are incorporated at

time t,

For the example 8-state filter, using Equations (4-27) and (4-28), the linearized FUR measurement

matrix H. is given by:

= 13fH1 1 0 H17 0(4-32)

Hf = 1 H23 H33 0 1 H27

where the scalar elements are:

H13 = ahx,] = (4-33a)
-TX3

49 +
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aht~x tl] -x~x~x4

H14 = x+ = 73 (4-33b)"-T" "2 2

X3 + X4

HI ahi[xt]- X3  (4-33c)Hrl ax7 3ý2 2 lx•(;

ah2[x, t] -X7X•X+ 4
H23 = ax- 3 (4-33d)

3 "•f•+ x2 z.,(,

2

H24 - 2[X, = 3 (4-33e)
x + x4  .

H27 - A 2[X, -I (4-33f)

2 2
+ X4Xi

Note that, in the observability tests for which Q. was artificiaUy assumed to be known, the H13 ,

H14 , H23, and H24 terms in Equation (4-31) become zero and H17 = cosOf and H 27 = -sin0f.

The measureraent noise v1(ti) represents the combined corrupting effects of the spatially

correlated background noise, the FLIR sensor noise (Section 4.3.1), and the errors due to the

FFT/IFFT processes. The covariance matrix Rf (with units of pixels2) associated with this error

is given by [13,33,41]:

0 0.00436 ] (4-34)
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For the elemental filter implemented in the AFIT software, a rinth state, centroid

equilibrium point to center-of-mass offset x&, is augmented to the state vector of Equation (4-1).

The four target dynamics states (x,,y,,vx,vy) in this case describe the motion of the hardbody center-

of-mass. The fundamental extended Kalman filter update equations remain the same, but the non-

linear measurement function and associated partials take on a new meaning. Equations (4-27)

become:

X,0 o1, = x, + x + (X - XoCos Of + V,.1 (435)

Yor, Y, Y+ y - (xP - x.)sinOf + vs 2

and cos 0f and sin 0f retain the same meaning given in Equation (4-28).

The linearized measurement matrix Hf is given by:

H [0 H13 H 14 1 01H17 0H 19 (4-36)
I=0 1 H25 H33 0 1 H27 0 H-29

The new partials of h[,] are given by:

4(x, -X4 (4-3 7a)

X3 + X4 3 -i/,)

Dh ltx, t,] -x Ix 4(x -- .X 9)
H14 = 3 (4-37b)

-1 = .. h1[X,I t_ -= x3  [(4-37c)
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H19  - 2 (4-37d)

H23  ah2[X't,] -xIx 4(x7 - x9) (3

-Hr4ý X4 Xh _xgt],, 5>
H=4aX (4-37f)

"r -5x + 2X4= •t<:

H27 = ah2[x. ti] _ V4 (4-37g)

3

H -ah 2 [x't1 ] = -X4 (-

2

H2.= - -xa +x (4-371+)

The state dimension is now nine, so the dimensions of the matrices in Equation (4-31) change

accordingly. The reader should keep in mind that only two FLIR measi, -nents are brought in

at this update, so the measurement dimension remains at two, thereture, the corresponding

measurement noise covariance matrix R, remains the same as in the eight-state measurement

update developed earlier.

4.3.2 Doppler Measurement Model. The primary objective of this research is dhe precise

tracking of the missile hardbody and determination of its center-of-mass location in the presence

of plume pogo. The basic premise underlying the dynamics modeling efforts is that the center-of-

mass is located at a constant offset distance relative to an equilibrium point about which the
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intenshN -entroid oscillates. The offset distance is oriented angularly using the filter-estimated

velocity ,t in the FLIR image plane [8]. Figure 4.2 illustrates the geometry of estimating the

offset distance and the dependence of the sca': and offset computation upon the filter's estimates

of the position and velocity of the intensity centroid immediately after the FUR update. (Note that

Figure 4.2 depicts the ideal situation; in general, the filter estimates of the centroid position,

velocity, and the orientation angle are not equal to the truth model values.) Originating at the

intensity centroid's estimated position, a low-energy laser is scanned along the estimated velocity

vector. Ideally, identification of reflections from the hardbody allow determination of the near

Low-Energy V -
"_IR Laser Scan -- t f

True and Fil er Estimate True and Filter-Estimated
of Offset Di sance/ Center-of-Mass

Pogo 3-d Hardbody Rectangle.
/

Pogo Equilibrium Point

• 1 •.+XFIJR

True Location and
Filter Estimate of
Intensity Centroid

Figure 4.2 Filter Estimate of Offset Distance (Ideal Conditions)
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and far end of the missile, so the center-of-mass is calculated as the midpoint between the two

ends. The reflections of the low-energy scan generate a measurement of the offset distance, to

be utilized as aimpoint information for the high-energy laser. The offset measurement delivered

by the scan is a function of the constant offset plus translation of the centrold from its equilibrium

point due to the pogo phenomenon. Because the offset was only modeled in the AFIT elemental

filter, the Doppler offset measurement is only applicable to the AFIT software simulations, which

used the nine-state filter.

The previous theses [8,9,14] utwiized a two-filter approach in which the FLIR filter and

center-of-mass filter functioned autonomously; the FUR filter had no knowledge of the existence

of the center-of-mass filter. Both Eden [8] and Evans [9] utilized the low-energy-laser speckle

return of the hardbody/plume interface to generate measurements for the center-of-mass filter.

Herrera [14] utilized the Doppler spectra in the laser return to derive successfully a more accurate,

unbiased, offset measurement, but still maintained the same basic independent-filter structure.

Since the Doppler mea,, irement model used for this research was developed in the previous thesis

[14], the description nl is section has been reproduced with some revisions.

The Doppler measurement model provides a measurement based upon the low-energy laser

Doppler return of the hardbody. The significant dissimilarities between the plume and hardbody-

induced Doppler returns can be explold to discern the plume/hardbody interface (Section 3.3.3)

precisely, and provide information regarding the location of the hardbody. The low-energy laser

measurement is provided to the Kalman filter whenever the laser intercepts the hardbody, and the

hardbody-induced (and plume-induced) Doppler return is received by Doppler return sensor

equipment. The resulting measurement to be provided to the filter is a noise-corrupted offset
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distance which is a linear function of filter's offset and pogo estimates. The measurement

function is given by:

XOd -- Xg - X7 (4-40)

The discrete-time scalar measurement model is given by:

z(t,) = H. x(t,) + vf(ti) (4-41)

where

z(t,) = measurement of the offset distance

H. = measurement matrix

x. (t,) = center-of-mass offset state

vf (ti) = discrete-time, white Gaussian measurement noise with
statistics:

E_{vQ,) = 0

Eov(t,)(t) = t = t.,} 
(4-42)

S-- ti 0 tj

where Rf= R, (true Doppler measurement variance), a function of low-energy laser wavelength,

iadar aperture, and signal-to-noise ratio (Section 3.3.3). The measurement matrix H0 is defined

as:

H =[0 0 0 0 0 0 -1 0 1] (4-43)

Since the measwreincnt is linear, the linear Kalman filter update cycle described in Section 2.2.2

(Equations (2-22)-(2-24)) is used.

In some instances, the low-energy laser sweep may be unsuccessful in geaerating a

measurement, either due to missing the hardbody because of poo" estimation of the centroid

location and velocity vector orientation, or due to poor conditions for discerning the differences
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in Doppler frequency spectra between the hardbody and plume. If a measurement is not generated

bye the LEL sweep, the LEL update is skipped.

4.3.3 Filter Parameters. This section provides a consolidated reference of the parameters

used in the ART simulation. Presented below are definitions of the modeling parameters, initial

conditions, and tuning parameters for the nine-state filter employed in this research.

4.3.3.1 Initial Conditions. Since initial acquisition characteristics of the filter have been

explored in the past [47], emphasis is placed upon the tracking problem, rather than acquisition

and trackivg. Thus, taken from previous research [8,9,14], the filter initial state estimate '* is

artificially initialized to zero error for the position, velocity, and pogo states of Equation (4-1).

The position states x, and x, are initialized on the true center-of-mass with the target plume

intensity centroid centered in the FLUR FOV. The velocity states x. and x4 are initialized in

accordance with the target's initial trajectory conditions as defined in Section 3.4.1. Both

atmospheric states x5 and x6 are initialized to zero. The offset oe he plume from its equilibrium

point is initialized to zero, as well as the velocity of the oscillation. The constant distance

between the equilibrium point and the center-of-mass are also initialized to true conditions (87.5

meters, or 2.92 pixels).

The initial state covariance matrix P(to) is:
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10 0 0 0 0 0 0 00

0 10 0 0 0 0 0 00

0 0 2000 0 0 0 0 0 0
0 0 0 2000 0 0 0 0 0

P Q)= 0 0 0 0 .2 0 0 0 0 (4-44)

0 0 0 0 0.2 0 00

0 0 0 0 0050 0

0 0 0 0 0002.50

0 0 0 0 0000.2

where the units of the covariance associated with the position states x, and x,, the atmospheric

states x5 and x6, the pogo position state xP, and the offset state x., are pixels2, and those of the

velocity states xi and x4 and the pogo velocity state vp are expressed in pixels2/seconds2 [9].

4.3.3.2 "uning Values. The measurement covariance matrix for the FLIR R... was

established empirically in past research [27,41]. R.u. (with units of pixels2) is given by:

R [0.00363 0 1 (4-45)
L 0 0.00598 J

The measurement variance for the Doppler measurement RD, ople,, is equal to the true measurement

variance and is a function of the low-energy laser wavelength, SNR, and aperture diameter of the

transmitte.r. The filter measurement variance ih carried over from Herrera's research and is given

by [141:

R9_______R, (4-46)
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where

RooPPo, w filter measurement variance

R, = true measurement variance

08 = beam diffraction limit

kP = pixel proportionality constant, 15 prads/pixel

SNR = signal-to-noise ratio; 10

Both atmospheric variances oa,2 and oay2 are equal to 0.2 pixels2 in accordance with the

truth model (Section 3.2.2)[9]. The process noise strength for the pogo state is dependent upon

the desired rms amplitude of the pogo oscillation o,,2 [40]. The filter pogo gain constant Kf is

initially set equal to the truth pogo gain constant KP (Section 3.2.4, Equation (3-38)) and then

adjusted if necessary while leaving the truth noise strength constant. Nominal rms pogo amplitude

for this research was carried over from Rizzo's research and set to o;, = .112 pixels2 at a

frequency of o = I Hz. The offset state dynamics noise variance Qdo is equal to 0.7 pixels2,

based upon Evans' research [9]. The probability of miss for the Doppler measurement model was

set at 0.01 (see Section 3.3.3.4).

4.4 Summary

This chapter presented "he dynamics models associated with the states incorporated into

the various filters tested in this thesis. The dynamics model was presented in this fashion to

enable the reader to determine the distinct model used for each filter discussed in the next chapter.

The measurement models for both the FUR and Doppler measurements were also introduced.

The Kalman filter accepts pseudo-measurements generated by the enhanced correlator algorithm

after processing the raw FULR data. The update is implemented through use of the extended

Kalman filter update cycle, since the pseudo-measurements are nonlinear in the state vector.
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Measurement updates for both the MSOFE filter models and the ART model were discussed.

Section 4.3.2 explained how the AFIT filter perforns an additional linear update when the

Doppler return measurement is made available. Finally, a summary of the initial conditions and

tuning parameters was presented.

4-29



V. ObservalH lity Grarrian and MSOFE Analysis

5.1 Introduction

This chapter presents the procedures followed for performing the observability studies

refexenced in the objectives in Chapter I. The rationale and a brief theoretical description of the

analysis methods used are discussed in addition to the results obtained. The next section of this

chapter enumerates the filters simulated and analyzed in MSOFE. The structure of each filter is

introduced and a justification for its analysis is provided. Finally, the results of the Monte Carlo

simulations in MSOFE will be presented for each filter configuration. The conclusions resulting

from the stochastic observability tests and MSOFE Monte Carlo analysis will be presented in this

chapter and summarized again in Chapter VII, along with the associated recommendations arising

from the analyses.

None of the filter structures analyzed in this chapter include the LEL measurements.

Since the principal intent of both the stochastic observability tests and the MSOFE analysis was

to assist in verifying some of the difficulties Rizzo identified, the same types of models were used

(and none of Rizzo's models included LEL measurements). Therefore, the offset state is not

included in any of the models. In these instances, one would expect to find observability

problems (especially on offset and pogo and possibly jitter). On the other hand, inclusion of the

third measurement, as in the elemental filter discussed in the next chapter, lends insight directly

into the offset and pogo states and one would expect observability to improve in the offset, pogo,

and possibly the jitter states. An equivalent set of observability tests would have to be
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accomplished on the augmented filter structure with the third measurement to verify any

improvement.

5.2 Stochastic Observability Tests

This section will present the procedures followed for performing the stochastic

observability analyses. First, a brief review of why these studies were initiated is outlined. Next,

a brief explanation of the mathematical theory is included, followed by a description of the filters

analyzed and the results obtained. Conclusions from the findings complete this section.

5.2.1 Background Review. During the course of his research, Rizzo discovered a number

of estimation problems with the simulations in the AFIT software [40]. He tested two different

versions of the elemental filter. The first included eight states: six target dynamics states

(position, velocity, acceleration along the FUR plane axes), and two atmospheric jitter states. His

second filter included the same eight states plus the two-state pogo model used in this thesis. Hie

found that, contrary to expectations, inclusion of the pogo model in the filter degraded overall

performance of the Kalman filter. He formulated several hypotheses to explain the finding, most

of them based on the fact that the pogo model may be interacting with other states in the filter

model. In his research to determine whether this was the case, he discovered that the atmospheric

jitter model embedded in the Kalman filter was not performing as well as previously expected.

In addition, his results indicated that there was probable interaction occurring between the pogo

states and the jitter states that resulted in the degradation in performance of the 10-state filter

compared to the 8-state filter. For this reason, he recommended that the plume pogo dynamics

states be removed from the filter model until further studies could verify the interaction and a

possible solution found.
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During his thesis research, Rizzo also performed a stochastic observablity test to gain

insight into the relative observability of the states in his 10-state filter model [40]. He concluded

that the filter contained a maximum of five states that were unobservable or only weakly

observable In the output. Those states included the velocity and acceleration states characterizing

the dynamics, and the pogo velocity state. This is a reasonable conclusion, since acceleration and

velocity are not directly measured and would be more difficult to estimate in the chosen model.

Because of the relatively benign trajectory being simulated for the ballistic missile, and the

difficulty of estimating the acceleration states, Rizzo recommended that the target dynamics model

be changed to a second-order shaping filter driven by white, Gaussian noise, along each axis (as

opposed to the third-order model that included acceleration).

The recommendations made by Rizzo were implemented in the succeeding three theses

[8,9,141, and the elemental FUR filter that was used consisted of six states: four target dynamics

states and two atmospheric jitter states. The velocity states were modeled as first-order lag filters

driven by white, Gaussian noise. The simulations from the last three theses indicate that there is

still a problem with estimating the atmospheric jitter states; specifically, the mean errors at (Q1,1)

are much greater than the mean errors at (t•). Therefore, the author was motivated to perform

another series of stochastic observability tests on a series of filters with differing structures using

the new target dynamics model (with no acceleration states) and comparing the results to tests

with the original six-state target dynamics model. In addition, it was deemed useful to revisit

filter structures that included the pogo states to gain further insight into how they may be affected

(or not affected) by the modeling of the target dynamics and/or atmospheric jitter states.
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For the MSOFE and AFIT elemental filter analyses, the target dynamics model was

changed from P, = ./•, v + w to P, = 0 + w, to allow for constant velocity paths better than those

whose mean values would tend to decay toward zero over each propagation (as in the original six

state model). Since this study was originally implemented to discover observability problems with

the six state "FLIR filter" used by the previous three theses, that was the model studied. In the

future, it would be useful to apply the same observability tests to the constant velocity models

used later in this research.

5.2.2 The Stochastic Observability Test. If a stable, discrete-time dynamics/discrete-time

measurement system of order n can be described by Equations (2-9)-(2-17), then the observability

gramian matrix can be expressed as [21]:

N

MD(O,N) A Ej r(i,O)Hr(i)H(i)4D(i,O) (5-1)
i-1

The discrete-time system is completely observable if and only if any of the following criteria are

met: (1) the null space of the n x n matrix MD is OER' for some finite N, (2) MD is nonsingular,

i.e., invertible, (3) MD is positive definite, (4) the determinant of MD is nonzero [21]. If MD is

of rank k<n, then it is said that there are (n - k) "unobservable states" in the model.

In order to gain some insight into the "relative observability" of the states, the magnitudes

of the eigenvalues of MD may be inspected. Theoretically, none of the eigenvalues should be

negative, all should be real-valued, and there are as many unobservable states as there are zero

eigenvalues. If any eigenvalue associated with a state is several orders of magnitude smaller than

the other eigenvalues, that is an indication that the state is difficult to observe.
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The observability gramian matrix and its eigenvalues were evaluated using the discrete

Lyapunov equation solver in a controls design software packages called MATRIXx [15]. The

software was installed on a SPARC II workstation and utilized double precision numbers for all

calculations. For independent verification of the results gained from MATRIXx, the equivalent

functions on an alternate software package called MatLab [461 were used. Both sets of tests

yielded the same results. The next section presents the outcomes of the stochastic observability

tests and the resulting conclusions.

5.2.3 Observability Test Results and Conclusions. The objectives in Chapter I outlined

six different filter structures which were to be subjected to the stochastic observability condition.

The structure of each filter is listed in Table 5.1. Each filter was to be analyzed with a known,

constant target angle 0 relative to the FLIR x-axis (set to 45 degrees or n/4 radians) and with a

general angle derived from the velocity vector (as was done in the simulations). Recall the

definition of the measurement matrix H1 (Equation 4-32) used in the measurement equations. In

the constant velocity/constant angle case, the nonlinear elements defined in Equation (4-33) that

Table 5.1 Filter States for Stochastic Observability Tests

Filter xly, vJvY ajay Atmosphere xp/Vx Total States

A 2 2 2 6 12

B 2 2 2 2 8

C 2 2 6 10

D 2 2 2 6

E 2 2 - 2 2 8

F 2 2 2 2 2 10
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are associated with the velocity states become zero. The nonlinear terms associated with the pogo

state (H1,7 and H27 ) become constants. Therefore, for the known constant angle cases, the linear

Kalman filter update equations are used. For the general angle case, the extended Kalman filter

update equations are used with the nonlinear measurement function h xt] and the H1 defined as

in Equation (4-33) (i.e., the nonlinear terms are included).

For the case with the known constant angle 0, the stochastic observability tests yielded

inconclusive results. The observability gramian matrix for all structures was founci to be close

to singular or badly scaled. Inspection of the elements of the matrices showed that the magnitudes

varied by over 60 orders of magnitude with individual elements ranging from orders of 10.23 to

10". Of course, these eigenvalues that were many orders of magnitude smaller than the largest

eigenvalues could be deemed essentially zero, indicating unobservable or essentially unobservable

states. Moreover, some of the eigenvalues calculated were either negative or complex. These

erroneous results are most likely the due to ill-conditioned (D matrices, causing numerical precision

difficulties with the software and hardware. It should be reiterated that all calculations were done

in double precision (64-bit), which was the only avenue available to the author for avoiding such

numerics problems. These first set of inconclusive results were obtained using the original sample

period of At= 1/30 seconds. The filters were also analyzed with the reduced sample period of 1/60

seconds to determine if there was any improvement in the scaling, but results were similarly

inconclusive.

Since the numerical difficulties were thought to be a result of the large difference in orders

of magnitudes of elements of 4P associated with the different states, it was a reasonable deduction

that transforming the system with a scaling matrix before applying the observability test might
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yield better results. Several combinations of scaling matrices were applied and the observability

gramian MD and its eigenvalues calculated for each. Through use of the scaling matrix, the order

of magnitude variation for the diagonal elements of MD for some of the filters was reduced to

about 20 (l102 variation). The associated eigenvalues for such cases were all positive and real,

but showed similar large differences in orders of magnitude. It was hoped that groupings of

eigenvalues, some large and others many orders of magnitude smaller, would provide some insight

into unobservable or weakly observable states, since the elgenvalues in the smallest groups can

be declared essentially zero. However, as emphasized before, even the groupings resulting from

use of the scaling matrix varied so extensively in magnitude (beyond the precision of the machine

implementing the test), that it would probably be overly speculative to rvako any iefinite

conclusions. Therefore, these results were also considered inconclusive.

Because the observability issues were unresolvable for the known, constant 0 angle case,

no attempt was made to subject the filters to the observability conditions for the general angle-of-

attack case. Because of th, insurmountable numerical precision problems, the only other way to

gain insight into the observability of the states is to analyze the statistics of Monte Carlo

simulations. If better hardware and/or software are made available to researchers in the future,

it may be beneficial to attempt the stochastic observability studies again.

5.3 MSOFE Monte Carlo Analysis

The Multimode Simulation for Optimal Filter Evaluation (MSOFE) program [6] is a

package coded in the FORTRAN softwart age, that can perform both covariance and Monte

Carlo analyses on single linear tc, ided Ka filters. The code is self-documented and

constructed in a modular form sU ua,,i the trui , and filter models are programmed in
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subroutines accessible to the user. The core program that performs the analysis is in a separate

package and, for this research, was not altered. The initial conditions and tuning values for the

truth and system filters are contained i. i data input file, enabling runs to be performed without

re-compiling and linking the code. MSOFE produces data listings which are processed through

another program called MPLOT, which produces data files compatible with numerous different

plotting programs. The plots appearing in this thesis were produced using MATRIX, (15].

A considerable amount of time was spent becoming familiar with MSOFE and creating

and debugging the continuous-time truth and filter models in the code. Now that the basic models

have been established, continued research on with this package should be somewhat simplified

since only slight modifications to the analysis proc, - ieed be made. This section presents the

procedures used for analyzing the filters using MSOFE and the results obtained from that analysis.

Since any explicit conclusions drawn from the stochastic observability studies would be

speculative, it was anticipated that analysis of some of the same filter structures through Monte

Carlo simulation may prove more fruitful. The primary objective of the analysis was two-fold:

first to investigate the estimatability of the atmospheric jitter and plume pogo; and to determine

if there were any degrading affects caused by interaction of the atmospheric jitter and pogo states.

Another reason was to check out the filter performance independently of the "AFIT software" to

ensure that performance attributes (e.g., poor jitter estimation at ti,÷; vs. good estimation at t,' )

were really inherent in the problem and not due to some quirk in the simulation (especially of the

truth model) in the "AFIT software". For these reasons, the emphasis of the analysis presented

in this section has been placed in those areas. Also, because of the unforeseen time expended in

the familiarization and debugging process, the number of filter configurations originally

established for analysis in the objectives (see Table 1.2) was reduced to the ones which the author
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felt would yield the most insight into the estimatability of jitter and plume pogo and assist in

analyzing the performance of the elemental filter. This section describes the results of the 10-run

Monte Carlo analysis performed using MSOFE. Appendix AAntains a brief discussion of how

the statistics In this chapter and the next were calculated,

5.3.1 MSOFE Filter Configurations. Table 5.2 shows the subset of the system/filter

combinations enumerated in Table 1.2, which were subjected to Monte Carlo analysis with

MSOFE. Note that, as mentioned in the chapter's introduction, the LEL measurement is not

incorporated into any of the models and therefore the offset state is not included. Engineering

intuition and past experience (especially Rizzo's results [401) lead one to anticipate observability

problems without the LEL measurements. It is anticipated that inclusion of the LEL

measurements should assist the filter in estimating the more weakly observable states.

Table 5.2 Filter/Truth Model Combinations Analyzed with MSOFE

TRUTH MODEL FILTER MODEL

Sim NJ DYN [POGO I ACCEL Jit I r JrniE DYN J POGO I

21 6 4 2 4 4

4 6 4 2 2 4 6

62 6 4 2 4 2 6

71 8 4 2 2 4 4

812 8 4 2 2 4 2 6

91 8 4 2 2 2 4 6
101 8 4 2 2 2 4 2 8

Notes: 1. Filter structure does not match truth model.
2. Analysis performed for both known constant and general angle cases.
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Combinations 1, 3 and 5 from Table 1.2 were not analyzed because the filter contained

states (pogo) that were not included in the truth system. The last Jx combinations fror Table

1.2 were not analyzed because they contained acceleration states in tho truth model. Siw.;e the

intention was to use the "4SOFE analysis as a stepping stone to inalysis of the elemental filter,

which did not contain acceleration states modeled in the dynamics, those runs were considered

to be of low priority. Table 5.2 shows that 4 different filters were tested against three different

truth models. All seven combinations in the table were tested with a deterministic constant angle

between the velocity vector and the positive FUR ;-axis (0, = 600). The simulations 6, 8 and

10 in Table 5.2 were also analyzed with the general angle model in the filter. (Recall that the

difference is in the update model, which becomes linear for a constant known angle 0.,, but

nonlinear for a general angle, defined in terms of the filter estimated velocities v, and vy, which

breaks the pogo into the FUR axes x and y components; recall section 4.3.1.3.)

Six different pogo conditions were also considered for study to determine whether the

magnitude or frequency of the pogo oscillation affected estimatability of the pogo and/or

atmospheric jitter. Tae conditions are listed in Table 5.3. Since simulation number 10 of

Table 5.2 most closely approximated the simulation in the AFIT software, only that filter was

analyzed under all six pogo conditions. Pogo condition four, considered nominal for MSOFE

analysis, was simulated in the truth and filter models for the filters analyzed with the known

constant angle 0, (as denoted by Note 2 in Table 5.2).

In the MSOFE Monte Carlo simulations, as with the elemental filter evaluations of the

next chapter, the simulation coordinates are in terms of the FUR plane. The filter states were

initialized to the true conditions in order to study tracking performance (as opposed to acquisition
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Table 5.3 Pogo Conditions for Nonlinear Filter Analysis

Pogo Frequency o 2 Gain Constant Initial
Cendition (Hz) (pixels 2) 'p/ Pogo

Covariance
1 0.1 0.067. 003780 4.489e-3

2 0.1 0.670 0.3780 4.489e-3

3 1.0 0.067 0.01195 4.489e-3

4 1.0 0.670 0.11950 4.489e-1

5 10 0.067 0.00378 4.489e-3

6 10 0.670 0.03780 j 4.489e-1

performance from poor Initial conditions). Based on a nominal velocity of 2700 meters/second

over the 10-second Monte Carlo simulation at an initial velocity angle of 600, the component

velocities were iritialized to v, = 450 pixels/second and vy = -779.4 pixels/second. All other

initial state conditions were established at zero. The variance for the atmospheric jitter process

in both FUR plane directions was =a. = 0.2 pixels 2, the same as in the elemental filter. Unlike

the elemental ft"*er simulation, the measurement noise covariance is considered equal in both axes

(as might be expected in a more modern FUR pixel array). The measurement noise variance R,

(with units of pixels2) associated with sensor noises was:

R 0.00436 0 (5-2)
0 0.00436]

Nominal range was set at 200 Km and the same pixel proportionality constant k. = 15 prad/pixel

was used. The choice of a decreased value for the nominal range was to reflect a scenario similar

to the actual scenarios anticipated by the sponsor at the Phillips Laboratory [4,5]. The intention

was eventually to modify the simulations in the AFIT software to reflect similar scenarios.
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5.3.2 Monte Carlo Analysis Results. Since sensitivity analysis using MSOFE was not

intended to be exhaustive, but only to provide insights into obvious filter performance deficiencies

aud -k'te estimation interrelationships, this section will not list exact statistics for individual runs.

AMso, to avoid redundancy of detailed observations (many simulations yielded nearly identical

results), it will discuss the general observations resulting from inspection of the plots obtained

from the simulations.

Sample plots that show specific features emphasized in the discussion are contained in

Appendix B. Figure B. I is a typical sample of t, plots produced from a simulation. The top

plot, Figure E.I(a), shows a direct comparison of the ensemble average truth state and ensemble

average filter estimated state (averaged over 10 runs). The solid line represents the truth and the

line of evenly spaced dashes represents the filter estimate. The bottom plot, Figure B. l(b), shows

a comparison of the statistics calculated for the system and the filter over 10 runs. The solid line

denotes the mean error (ensemble average of filter estimate minus true value). The evenly spaced

dash lines are the mean filter-computed state error standard deviation. The dotted lines denote

the mean plus and minus one standard deviation calculated from actual ezrors. Good tuning is

indicated by 0 * a, enveloping the mean * a of the actual errors calculated from the Monte Carlo

analysis. The plots for the simulations discussed in Section 5.3.2 are contained in Appendices C

and D.

5.3.2.1 Linear Filter (Constant 0, ) vs Nonlinear Filter. As previously mentioned,

configuration numbers 6, 8 and 10 in Table 5.2 were analyzed with nominal pogo conditions for

both a general and constant angle. Inspection of the plots for all three simulations showed

virtually no differences between the general angle and constant angle. These identical results
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verify the correctness of the extended Kalman filter update cycle used for the nonlinear, general

angle case. The identical results also Indicate that the thren nonlinear filter configurations estimate

the velocity angle 01 very well. Note that such accurate angle estimation is not necessarily an

indication of how well the individual velocity states are estimated, but is a reflection of the ratio

of the estimated velocity states, since the angle Q, is a function of that ratio. With the exception

of the analysis dealing with ciifferent pogo conditions, all of the following results and conclusions

were drawn from comparison of the linear Kalman filters.

5.3.2.2 Position Accuracy. The most accurate filter estimation occurred when both the

truth and filter system did not contain atmospheric jitter states and matched each other in structure.

Simulation six demonstrated the highest position estimation accuracy (0 mean errors, Ia w 0.04

pixels). The filter was well tuned in all states. These results were expected and serve as a good

baseline for filter performance against a real world without jitter. This is not realistic, but leads

to the conclusion that, because estimation of pogo was fairly accurate (zero mean, a P, 0.04

pixels), the pogo model is sound and the pogt L•ates are estimatable.

The most accurate filters when atmospheric jitter was simulated in the real world, were

the filter models in simulations 4 and 10. In these simulations, the filters are well tuned in all

states and deliver equivalent accuracies with zero mean errors and a w 0.18 pixels. In both

simulations, the high accuracy woldd be expected since the filter structure matches the truth

model. However, simulation 10 includes pogo states and simulation 4 does not. Analysis of

simulation nine also indicates equivalent position ac'uracy, despite the fact that the truth model

simulates plume pogo but the filter does not estimate it. Apparently, the errors due to the pogo

phenomenon are attributed to atmospheric jitter and appropriately compensated by the filter.
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5.3.2.3 Atmospheric jitter Estimation. Comparison of the simulation data shows that

atmospheric jitter is the dominant effect on filter accuracy. All filter etructures that didn't include

jitter when the truth model did (simulations 2, 7 and 8), drastically underestimated their own

errors and demonstrated poor accuracy relative to filters that estimated jitter. Errors were zero

mean, but standard deviations were twice as large (a r 0.3 to 0.4 pixels). Since total real jitter

has Cr. 2 = 0.2, or a. ,o 0.45, standard deviations of such a magnitude indicate large estimation

errors. In all three simulations, the filter attempted to compensate for unmodeled jitter errors by

overestimating changes in velocity (all three cases) and overestimating pogo oscillation magnitude

(simulation 8). Again, inclusion of pogo in either the truth model, the filter model, or both did

not noticeably affect overall position errors. No effort was made to tune the filters since that was

not the purpose of this exercise. With tuning, one could get more correct indications of trends,

but not including jitter states in the filter is not a good idea.

When properly tuned, the filter was able to estimate jitter existing in the truth model with

zero mean errors and a w .25 (see simulations 4, 9, or 10). The plots of the jitter statistics show

that filter-computed eiror estimates at (t,÷, )(c so 0.30) are still greater than filter-computed error

standard deviations at (t• )(a m 0.20) by a factor of about 0.5. This is similar to the estimation

problem found by Rizzo [40], but not nearly to the same extent. Rizzo observed factors as high

as several orders of magnitude [24]. This discrepancy between the MSOFE and AFIT software

should be resolved. The filter does benefit by including the jitter states, since the uncertainty in

position caused by the jitter process itself is 0.4472 pixels. By including the jitter states, the filter

can decrease the uncertainty in position by about one half.
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5.3,2.4 Flume Pogo Esrimation. All of the MSOFE simulations Indicated that the pogo

phenomenon is not inherently difficult to estimate. Simulation 6 showed that If it is the only

disturbance on the centroid position (other than target dynamics), it is easy to estimate.

Simulation 9 showed that the filter is robust enough to compensate for errors due to pogo by

attributing them to jitter. However, simulation 8 showad that the converse is not true; inclusion

of pogo states cannot comensate for the existence of atmospheric jitter. Simulation 7 showed

that performance is very poor if neither jitter nor pogo are included in the filter model.

Inspection of the pogo state plots from simulation eight show that the filter attempts to

compensate for errors due to lack of jitter estimation in its structure by increasing the pogo

oscillation magnitude. Since the power spectra of pogo and atmospheric jitter processes are

different (specifically, jitter has a higher break frequency than pogo and can appear almost white

in comparison to pogo, which shows a resonant power spectral density peak around its undamped

natural frequency) all that increasing the estimated magditude serves to accomplish is to degrade

pogo estimation. Resulting position accuracy is not improved. It was felt that tuning the filter

(varying the dynamics noise and/or measurement noise used for the filter model) may assist in

improving the pogo estimation accuracy. A scaling factor was applied to the pogo process noise

strength in the filter (which was established to the same value as the truth model) to determine

whether better tuning would reduce the mean standard deviation of actual errors. It was found

that the best scaling factor to use was unity (i.e. tell the filter what true conditions are).

5.3.25 Plume Pogo/Atmospheric Jiter hJteraction. The preceding analysis shows that

pogo is less difficult to estimate than jitter. In fact, the presence of the jitter model seems to be

the dominating factor in how accurately the filter estimates position. If the filter model includes
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jitter estimation, the limiting factor on position accuracy Is directly dependant on how well jitter

is estimated. Analysis does not indicate that there is any major degrading type of interaction

between the pogo and jitter models. Atmospheric jitter estimation accuracy did not degrade when

the pogo model was introduced (simulations 4 and 9 vs simulation 10). On the other hand, pogo

estimation improved when the atmospheric jitter states were. added to the filter (simulations 6 and

8 vs simulation 10).

5.3.2.6 Sensitivity to Different Plume Pogo Conditions. This subsection presents

observations based on analysis of the nonlinear eight-state filter used in simulation 10 from

Table 5.2. A ten-run Monte Carlo analysis was performed on the filter for each of the six pogo

conditions listed in Table 5.3. In each case, the filter was tuned for the proper pogo conditions.

Inspection of the plots in Appendix D shows that all the mean errors in the position states were

approximately zero. The runs for pogo conditions 1 and 3 show that the x position mean error

may be slightly negative (on the order of -0.04 pixels), but this could be a reflection of an

insufficient number of Monte Carlo runs. Under all pogo conditions except number 2, the x and

y position errors were the same: zero mean, filter-computed standard deviation Ia w 0.19 pixels,

actual standard deviation lc w 0.19 pixels. In other words, the filters appear to be well tuned.

Pogo condition 2 is the exception. Position errors were zero mean and the filter was well tuned,

but la for x-axis ,rrors was about 0.34 pixels and la for y-axis errors was about 0.53 pixels.

This implies that slow oscillations of large magnitude are the most difficult to estimate.

As with position accuracy, estimation of atmospheric jitter was the same for all pogo

conditions. Atmospheric jitter mean estimation error was zero, with filter-computed error and
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actual standard deviations of about 0.25 pixels (the same as for the best estimation of the linear

filters).

Note that the upper plots (figures (a)) in Appendix D are the mean over 10 runs as

opposed to mean * Ia. If the truth model initial conditions had been randomized, the mean could

be zero for all time, while a steady-state error standard deviation (not shown in the plots) in

consonance with the pogo process op2 would be achieved. Initial condition randomization should

be accomplished for more realistic simulations. It is suspected that the filter may be fairly well

tuned but randomization of the initial conditions would allow a better performance assessment.

Also note that there is an apparent anomaly on the pogo offset plots for pogo conditions three

through six -- truth model oscillations die out vs maintaining the aP2 of Table 5.3. This actually

is not an anomaly and should be expected, since the mean pogo value should appropriately die

out (as mentioned earlier in this paragraph). The plots appear with a nonzero mean because the

initial conditions for magnitude and phase were established tco identical values at for every run.

"Table 5.4 Pogo Error Statistics for Different Pogo Conditions

Pogo Mean Error Filter Computed a Actual a
Condition

1 0 0.10 -0.100

2 0 0.50 e 0.500

3 0 0.01 < 0.005

4 0 0.10 W 0.100

5 0 very small very small

6 0 very small very small
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As previously mentioned, If the initial conditions were randomized, the pogo process would have

the appropriate zero mean and standard deviation from the start of the run. The upper plots for

pogo condition should not be misunderstood, since they could be misleading without the

randomized initial condition and the * lp traces.

Plume pogo estimadon statistics varied, depending on what condition was in existence.

Table 5.4 shows the approximate statistics for the pogo statts of the filter tuned for differing pogo

conditions, obtained off the plots in Appendix D. Note that the errors become negligible when

the pogo oscillations are at the highest frequency of 10 Hz.

5.4 Summary

This chapter presented the procedures, filter models and results of the stochastic

observability tests. The tests proved to be inconclusive due to numerical precision difficulties.

Section 5.3 explained what filter configurations were subjected to Monte Carlo analysis with

MSOFE and the results of the performance analysis. The accompanying plots for the linear

Kalman filter discussion are contained in Appendix C. The plots that accompany the description

of results for the nonlinear filter tuned for alternate pogo conditions are contained in Appendix

D. An exhaustive run by run description of the plots is not contained in this section, out the plots

are included so that the interested reader may scrutinize the plots further in order to draw their

own conclusions.
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VI. AFIT Elemental Filter Analysis Procedures and Results

6.1 Introduction

The software simulation of the real world, measurement generation, enhanced correlator

algorithm and various Kalman filters have been developed at AFIT over the last 14 years [31].

The truth models used to simulate the real world, and the generation of the measurements for the

tracking filter, are described in Chapter IIM. A detailed description of the nine-state dynamics

model and the measurement model of the filter which is analyzed in this chapter is contained in

Chapter IV.

This chapter presents the process used for analyzing the elemental filter in the AFIT

software. Recall from the objectives in Chapter 1 that the fundamental goal of this portion of the

research was to combine the two filters (one for tracking the center-of-intensity of the target/plume

IR image, and one for estimating the offset between that center-of-intensity and the center-of-mass

of the missile hardbody) developed and analyzed by the previous three researchers, Eden, Evans

and Herrera [8,9,14]. into a single filter that also incorporated estimation of the plume pogo. The

intention of this goal is eventually to determine tuning constants for a series of filters, each of

which is tuned for optimal performance when exposed to different pogo charactcristics (in this

instance, rms amplitude and frequency of pogo oscillation). That series of filters would then be

used to form a multiple model adaptive estimator for this application.

The following sections describe the performance delivered by an elemental filter tested

against nominal pogo conditions. The associated performance plots, displayed in Appendix E,
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reveal that there may be errors in the software causing inaccurate simulations under certain

conditions. These potential errors, their effect on the simulation, and proposed solutions are also

desciibed in the ensuing sections. Although numerous runs were made under many different

conditions, a single -un was selected for Appendix E that contains all the necessary salient features

found throughout all the runs that will be addressed in the detailed analysis.

The elemental filter which produced the results described below contains nine states and

updates the state vector from two separate sensors. The first update contains plume centroid

position information from the FLIR. Raw FLIR data is processed through the enhanced

correlation algorithm and position of the plume centroid is presented to the filter in terms of two

offsets from the center of the field-of-view corresponding to FUR plane x- and y-axis coordinates.

After the filter performs an update to the state vector, a low-energy laser sweep is initiated in

order to obtain a measurement of the center-of-mass location relative to the plume centroid. The

sweep is oriented to start at the estimated centroid location, calculated from the filter's state

vector, and to intercept the hardbody along the velocity vector, also calculated from the state

vector. The Doppler frequency shift characteristics in the LEL return are exploited to determine

the offset distance of the hardbody center-of-mass from the plume center-of-intensity along the

velocity vector. The Kalman filter then uses this measurement to perform a second update before

estimating the position of the plume centroid and center-of-mass at the next measurement period.

The FLIR plane is shifted in order to center the FOV on the centroid estimate at that next sample

period.
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6.2 Performance Analysis Results

Appendix E contains selected plots which depict the performance of the elemental filter

for a !iogle simulation of five Monte Carlo runs with nominal pogo conditions. The filter pogo

gain constant, K,,, is adjusted to reflect the desired pogo rms amplitude of 0.112 pixels (i.e., the

filter dynamics noise strength is set equal to the truth model's). The other tuning parameters and

simulation conditions are listed in Chapters III and IV. Table 6.1 lists the performance statistics

associated with the plots. Two different types of plots are contained in the Appendix E. The first

type directly compares the v, ue di the filter estimated state to the true state. As in the previous

appendices, the solid line is the true condition and the dashed line is the filter estimate. The other

type of plot contains five traces; these are the statistics plots explained in Appendix B.

Table 6.1 Time-Averaged Error Statistics for Elemental Filter (Nominal Pogo Conditions)

STATE MEAN MEAN SITD. DEV. STD. DEV.
ERRORQt/) ERROR(ti÷) oy(ti-) oCt•)

X POSITION -0.489990 -0.488290 0.43488 0.43263

Y POSITION 0.748290 0.745320 0.41595 0.41270

X VELOCITY -0.194090 -0.188110 0.53733 0.53"703

Y VELOCITY 0.287940 0.276900 0.53360 0.53473

X JYITER 0.024115 0.034851 0.40936 0.35582

Y JITTER -0.047987 -0.071015 0.45138 0.42079

POGO OFFSET -0.007040 0.006787 0.13381 0.13382

POGO VELOCITY -0.049104 -0.047486 0.81970 0.81876

OFFSET -0.744800 -0.750030 0.92680 0.93146

.,WCENTROID -0.110370 -0.106100 0.52676 0.52670

Y CENTROID 0.099324 0.092069 0.82138 0.82417
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6.2.1 Position Estimation Accuracy. Estimation accuracy of the position is the primary

measure of overall filter performance. There are two important features that should be noticeu

in the x and y position error statistics plots (Figures E. I (a) and (b)). The first is that the filter

is not properly tuned for the position states, despite that fact that it was "told" the proper pogo

conditions to expect and also the fact that the optimal tuning parameters for atmospheric jitter,

determined in previous theses [17,38,47,40], were used. Since estimation accuracy of the other

states will affect the position accuracy, inspection of the other statistics plots shows that the poor

tuning is partially impacted by sub-optimal tuning in some of the other states. The other

important salient feature is that there is a nonzero mean error in both the x and y directions.

Possible causes of the biased errors will be presented later in the analysis.

6.2.2 Vel -ity Estimation Accuracy. An important feature present in the velocity error

statistics plots (Figure E.2) and all the other statistics plots (except for the plume pogo statistics)

is the transient during the first second of the simulation. The actual errors were off the scale of

the plots shown, so statistics were not plotted until after the beginning of the simulation. The

actual filter velocity estimate was initialized to the true velocities, so errors are zero at to. A

frame by frame inspection of the velocity data showed that an unknown phenomenon is causing

filter velocity estimates to suffer an extreme transient in the first two to five frames before

recovering. The fact that the filter is able to recover from such a large transient in the velocity

state is an indication of robustness, despite its constant velocity mL:odel. The unknown anomaly

causing the initial velocity transient is also the probable cause of the initial transients visible in

the other states. The error statistics in Table 6.1 were accumulated from two seconds into the

simulation to the end, so they should be an accurate representation of the filter's steady state

performance.
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Other than the Initial transient, velocity tracking is reasonably good and filter estimation

tuning is close to optimal; a slightly higher noise strength may be beneficial to optimize the

tuning. Mean errors appear to be close to zero and exhibit no obvious systematic nonzero trends

that would require attention through tuning or modeling efft Ls.

6.2.3 Atmospheric Jitter Estimation Accuracy. The next two figures (Figures E.3 and

E.4) show a visual presentation of the filter's estimate of plume intensity centroid displacements

in both axes due to atmospheric disturbances. Performance was approximately equal along both

axes. The errors don't appear to be associated in any way with the pogo state plots, so there is

no apparent affect of pogo coupling into the atmospheric jitter states. As noted in the previous

theses [8,9,14,401, there is a distinct difference in filter estimated uncertainty immediately before

and after the update period, however, the difference in this case is on the order of only 50 percent

,f the la estimate at ti.". Previous observations showed a difference of several orders of

magnitude [24]. The time-averaged filter la is about 0.25 pixels, but actual errors exhibited

temporally averaged standard deviations on the order of lo = 0.4 pixels in each direction (see

Table 6.1). These errors indicate that the filter is not estimating the jitter very well at all, since

the actual jitter process itself had a variance of 0.2 pixels2 (or a = 0.447). The filter could

possibly track as well without any jitter model states at all. This observation is contrary to the

results obtained from the MSOFE analysis, in which estimation of jitter was not only possible, but

significantly improved filter performance when included in the model.

6.2.4 Plume Pogo Position and Velocity Estimation Accuracy. The two figures showing

the filter's plume pogo offset position and velocity estimation performance (Figures E.5 and E.6)

indicate there is room for significant improvement. The bottom plot on E.5 and E.6 indicate a
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nonrandomized initial condition on truth model simulations of pogo (so all samples show the same

phase, giving the sinusoidal mean motion that is obvious on tie plots). This sinusoidal mean

would be t'euved if the initial conditions were randomized. It is then suspected that the

performance plots would indicate reasonably good tuning and performance. There is apparently

a nonzero initial offset in the filter estimate (Figure E.5(a)), however, the pogo offset should be

showing ze-ro, as it was set in the software. A frame-by-frame analysis would be necessary to

determine the actual initial setting. There could be a large initial transient similar to the

observation associated with the velocity states. The initial estimates of the filter cause the pogo

position (and velocity) estimates to be out of phase with the truth model, and hence the major

contributor to pogo estimation errors. By the end of the 6.5 second simulation, the filter is

beginning to recover and reach steady state. The general trend of the plots shows that the filter

would probably be well tuned in a steady state condition. It is also probable that it would recover

more quickly if the pogo oscillation frequency were higher. This hypothesis is supported by the

MSOFE data shown in Sectiou 5.3.2.6 that indicates that higher frequency and lower magnitude

pogo conditions are easier to estimate. The corresponding plots of pogo estimation from the

MSOFE analysis also showed that estimation can be very accurate if the filtar is in the proper

phase. The initial conditions of no pogo offset and zero velocity do not reflect conditions that

would ever exist in the real world and would be cause for concern about model adequacy if they

were coupled with small initial variances. However, use of large initial filter covariance terms

P0 for pogo position and velocity would be imitative of the real world (symbolizing high

uncertainty of initial conditions), and mean values of zero for both states would be fine initially.

This simulation, however, is important in that one cannot expect the filter to receive the

proper initial pogo conditions and the filter should be able to recover from improper conditions.
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It -iseful to note that recovery time for this model for these pogo characteristics is fairly

exten ve (over 6 seconds). This simulation also showed (as did the MSOFE simulations) that the

filter recovers from magnitude errors more rapidly than from phase errors. This suggests that

large pogo P, and Q values could be used for an initial acquisition phase to speed up the

transients. Then, the Q values used for this simulation could be used in track mode. Finally, the

pogo errors do not appear to be modulated in any way by the atmospheric jitter estimation errors,

indicating that there is probably no corruption from the jitter states.

6.23 Offset Estimation Accuracy. Figures E.7(a) and E.7(b) show the filter's estimate

and error statistics respectively for the offset distance between the plume intensity centroid

equilibrium point and the missile center-of-mass. The plots clearly show that tuning of the filter

leaves much to be desired. Also note that there is a substantial bias in the mean error and that

the filter's estimate is not constant, as it should be. Since the offset is modeled as a constant in

the dynamics model, the high frequency variations in the offset value a-e probably due to the state

updates from the low-energy laser measurement. It is suspected that much of the degradation in

filter pern )rmance can be attributed to the offset measurement. The offset error contributes

directly to the bias in mean error previously highlighted for the position states (Section 6.2.1).

The justification for this conclusion is revealed by analysis of the centroid estimation accuracy.

The erroneous offset measurements are described and several possible explanations for the poor

offset performance are proposed in Section 6.3.

6.2.6 Plume Intensity Centroid Estimation Accuracy. Although position of the plume

intensity centroid is not explicitly modeled in individual states within the filter structure, it is

easily calculated from the state vector and is carried throughout the software simulation. In fact,
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until this thesis, the filter position states defined the centroid location, since ail enhanced

correlator, template generation, and FUR controller functions are based on the centroid's position.

Because of the importance of the centroid location estimates, an analysis of the .fiter's estimation

accuracy of them has been included here. The last figure Jr Appendix E shows that tracking of

the plume centroid has essentially zero mean. Since the current filter defines the target position

states as the missile center-of-mass, and they are calculated relative to the centroid position, the

bias in the position states (mentioned in Section 6.2.1) must be caused by the biased offset

measurements. There are no traces indicating filter-computed error uncertainty since the centroid

locations are not explicitly represented in the filter state vector. Filter comput;d covariance could

De calculated through use of toe transformations CPTCT, where y = Cxf = x and y centroid position

coordinates, however for this thesis, the ultimate measure of performance is determined by the

accuracy of the center-of-mass location. If centroid location tuning becomes an issue, it may be

advantageous to incorporate the transformation equations into the softw,,u'e.

6.3 Potential Problems and Proposed Solutions

This part of thc chapter is divided into two subsections. The first presents explanations

of problems detected during the performance analysis of Section 6.2 The second sect-on addresses

several miscellaneous issues that the author felt impelled to record for the benefit of fuiture

researchers.

6.3.1 Specific Problems Revealed by Analysis. One can find reason to suspect many

errors in the simulation from analysis of the center-of-mass to centroid equilibrium point offset

plots. Recall that the measurement from the LEL was considered highly accurate when present

(a low measurement noise variance R relative to the dynamics noise strength Q). A frame-by-
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frame analysis revealed that offset values from the laser measurement did indeed appear to vary

more rapidly than expected (cven with pogo taken into account) and that there were possible

errors in the laser sweep routine. Both the bias and the evidence of noisy laser measurements

observed in Section 6.2.5 are reason to suspect that there are errors in the measurement generation

routines in the AFIT software.

The poor laser measurements lead one to speculate that a combination of events may be

occurring in the software. First, the bias may be a reflection of an improperly modeled Doppler

measurement. The Doppler measurement model used was developed and shown to generate

unbiased measurements successfully by Herrera in the previous thesis [ 14]. However, it may have

been implemented improperly in this research due to errors when transferring software code,

improper tuning (recall from Chapter III that the Doppler measurement is dependent on several

fat or any other misunderstanding of its implementation. The existence of the bias, which

is of tL. same approximate magnitude and direction characteristic of the speckle return model

[14], indicates that the Doppler measurement model should be inspected again to ensure proper

implementation.

Another event that may be causing both the bias and the noise is the laser sweep/scanning

routine. The frame-by-frame analysis showed that there were extended periods up to one second

during which no updates were made from the low-energy laser due to a lack of intercepting the

hardbody. This high miss-rate was not in consonance with the 0.1 percent probability of miss and

benign Doppler return parameters used for the simulation. Also, during the course of running a

few other simulations, particularly those with larger pogo magnitudes, the simulation locked itself

into an endless loop inside of the sweep routine. There are at least two potential causes for this
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error: LEL sweep geometry, and POV geometry. The first cause, laser sweep geometry, is highly

likely and was originally proposed by Evans [9]. It was the reason the LEL measurement routine

was upgraded from a simple single, scan routine to a series of scans forming the sweep. The

filter's estimate of the centroid location is not exact, and therefore basing the laser sweep on that

information may still cause either a partial (only part of the hardbody is intercepted by the sweep)

or complete miss. When Evans developed the sweep routine, he optimized it for a high

LEL/Hardbody intercept rate without any plume pogo. It may be necessary to modify the sweep

geometry (perhaps a simple expansion of the sweep angle) to improve the chances of intercepting

the entire missile hardbody in the presence of plume pogo. An excellent detailed description of

the scan and sweep routines is contained in Eden's and Evans' theses [8,91.

In addition to erroneous measurements caused by sweep geometry, the poor intercept rate

may have been caused by the geometry of the FUR tracking window itself (the FOV). The

increased frequency of problems when higher pogo magnitudes were tested leads to speculation

that part of the missile hardbody may actually be projected outside the borders of the FOV. Since

the FLUR controller seeks to center the FOV on the centroid, the FOV will oscillate along with

the plume, so the projection of the missile hardbody is what actually oscillates in the FUR plane.

The plume pogo distance, centroid equilibrium point offset distance, and missile length may

combine during the simulation so that part of the missile hardbody projection exceeds beyond the

boundaries of the FLIR plane. Further frame-by-frame analysis and creation of more statistics

would be required to verify if this is occurring.

One ad hoc software patch that decreases difficulties caused by geometry problems (and

which was >'nplemented in some simulations for this research) is simply to declare that the sweep
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did not intercept the hardbody. This patch prevents the simulation from locking into an endless

loop, but does not prevent a low intercept rate or fix either the laser sweep or FOV geometry

problem. A potential fix to the FOV geometry problem, if it is verified as being a cause of

difficulties, would be to utilize a larger FOV. This could be done by expanding the dimensions

of the tracking window to more than 8 x 8 pixels. Another method that expands the effective

tracking window is diagonally rotating the FOV (DRFOV) so that the velocity vector is aligned

at 450 to the FLIR plan axes. This rotation effectively expands the length of the combined plume

and hardbody that may be projected in the FOV and increases the chpnce of maintaining the track.

This method was successfully implemented and tested (with good results) by Rizzo [40], but prior

to the implementation of the LEL measurements and projection of the hardbody on the FLIR

plane. It may be advantageous to investigate using the DRFOV routines with the new elemental

filter developed in this thesis.

6.3.2 Miscellaneous Issues. In the course of this research, an inordinate amount of time

was spent becoming familiarized with the software. Because of its rapid development and

numerous contributors, much of' the internal documentation (the only current documentation

available) has become outdated. This is complicated by the fact that the software has been

developed over a long length of time and has an extremely high number of possible variations.

Consequently, it has become a highly complex and admirable accomplishment, yet one that can

still be improved tremendously. The inherent modularity of the structure should be maintained

and perhaps even increased. By utilizing function modules and subroutines, the variations in

configuration are easier to keep track of and to implement. Some of the features of MSOFE, such

as common variables and user designated parameters, were incorporated into the software and

have madie debugging and future changes to the model much simpler and efficient.
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Because of its rapid development, many errors were found in the software that did not

cause problems in previous theses, but were brought to the surface during this development. Chief

among these were some sign errors arising from the use of a right-handed convention for aligning

the FUR plane-to-missile range vector. Although this would initially be a logical choice of

coordinate systems, it causes a discrepancy be~ween the orientation of the truth and filter FUR

plane coordinates along the y-axis (see Chapter II). Furthermore, once the initial projection of

the missile and plume are made onto the FLIR plane, all calculations and control functions are

performed in terms of that coordinate system. This necessitates extraordinary care and attention

to the signs of any calculations involving y-axis components. Use of a left-handed coordinate

system, so that the range is considered negative, would allow the truth and filter coordinate

systems to coincide with each other. This would greatly simplify the debugging process for sign

errors and make the code more efficient.

Since the currently implemented truth model was originally developed when only FLIR

measurements were available, the target dynamics states are defined in terms of the plume

intensity centroid. The offset between the intensity centroid and the hardbody center-of-mass is

hardcoded as a constant (not explicitly modeled) and the center-of-mass location is a derived value

calculated from the truth state vector. This definition is convenient when using a structure with

two independent filters (as in the previous thesis), but is inefficient for the development of this

thesis and also does not reflect reality. With the incorporation of LEL measurements, information

is now available to locate the true target of interest, the missile hardbody. For this reason, the

truth model should be revised so that the dynamics states describe the missile center-of-mass.

This would also necessitate modeling the offset in the truth model, as opposed to hardcoding it

to a constant. The revision should yield a more realistic and logical truth model which leaves
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more room for future embellishment. For example, the offset could be modeled as a variable or

unknown distance. Revision of the truth model will also bring it more into line with the structure

anticipated for future elemental filters.

Another residual of the original FUR measurement-only structure of the truth model is

that the FOV, defined in terms of the FUR plane, is centered on the plume intensity centroid.

As mentioned previously, this causes the FOV to oscillate with respect to the missile hardbody

(or vice versa, depending on how you look at it). Although controller delay times and servo

limitations were regarded as negligible in earlier theses (see Section 2.3.3), they may once again

become complicating factors that resurface with the new measurement, revised truth model, and

higher sample rate. It is probable that a much smoother signal would be delivered to the pointing

controller if it is directed relative to the hardbody instead of the centroid. By the same token, it

would be a logical step to revise the FOV to center on the estimated center-of-mass. This revision

would require detailed investigation of the enhanced correlation algorithm, template generation,

and template re-acquisition routines to ensure that they continue to operate as designed.

6.4 Summary

This chapter presented the results obtained from analysis of the AFIT elemental filter

simulation. A single simulation was selected and a detailed explanation of filter accuracy given

for each state. The figures shown in Appendix E indicate that possible errors still exist with the

currently implemented design. Explanations of those possible problems and potential solutions

were offered in Section 6.3, as well as a discussion of several miscellaneous issues surrounding

the AFIT simulation software.
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VII. Conclusions and Recommendations

7.1 Introduction

This chapter summarizes the final conclusions of this thesis and suggests areas for further

study. Section 7.2 draws conclusions based on the results obtained in Chapters V and VI. Section

7.3 enumerates topics that require further research either to resolve problems found in this thesis

or to further the development of the general ballistic missile tracking objective.

7.2 Conclusions

Numerous conclusions were drawn, based on the results of the observability tests, MSOFE

analysis, and elemental filter analysis. The conclusions contained in this section are summarized,

so the reader should refer to the specific sections in those Chapters for detailed disfmssions.

7.2.1 Stochastic Observability Tests. The results of the stochastic obsevability tests

explained in Section 5.2.3 were inconclusive. Six different filter structures consisting of different

combinations of acceleration, atmospheric jitter, and plume pogo states were subjected to the

obs,.-xvability gramian condition test with both constant target angle and general target angle

measurement models. In all cases, extremely large variations in the orders of magnitude of the

eigenvalues of the observability gramian matrix M. were observed, which would normally indicate

unobservable states, which is a manifestation of numerics problems. In addition, both negative

and complex eigenvalues were observed,. The inconclusive results are due to numerical precision

problems in the software and hardware used to conduct the test.
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Two approaches were attempted to improve the ill-conditioning of the state transition

matrix cD and reduce the variation in the orders of magnitudes and associated numerics difficulties.

The first approach, reducing the sample period by 50 percent, had no significant impact. The

second approach was to apply a scaling matrix to the state transition matrix prior to computing

the system observability gramian matrix. This approach was successful in reducing the large order

of magnitude variation and yieIded all positive and real eigenvalues of the observability gramian

matrix MD. One could attempt to observe groupings of the eigenvalue magnitudes to gain insights

into relative observability of the associated states, but definite conclusions cannot be drawn since

the variation in order of magnitudes exceeds the reliable precision of the software and hardware

with which the tests were conducted.

7.2.2 MSOFE Monte Carlo Analysis Results. Section 5.3.2 contains a detailed analysis

of the results from testing four different filter configurations under varying conditions and in three

different real-world environments. The primary objectives of the tests were threefold: first to

determine the relative estimatabdity of atmospheric jitter and plume pogo individually; second to

investigate the existence of interactions among the pogo and jitter states; and third to provide

independent verification of the jitter and pogo models outside of the AFIT software.

Sections 5.3.2.3 and 5.3.2.4 address the first objective and Section 5.3.2.5 addresses the

second objective. On an individual basis, either or both phenomena can be estimated if the filter

model is properly tuned to reflect conditions in the real world. In general, the best filters were

able to estimate jitter with an accuracy of lCY = 0.25 pixels, which is an improvement over the

jitter itself, which was simulated with ao = 0.45 pixels. This conclusion is important in that it is

contradictory to results obtained from the AFIT model in previous years and this year.
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The various simulations also did not show any evidence of direct corruption of pogo on

jitte: estimation or vice versa. However, the data clearly indicated that jitter has the dominating

effect on filter sensitivity. Filter models that included jitter estimation but not plume pogo were

able to compensate for unmodeled pogo errors by attributing the motion to the jitter states. The

converse case, assigning unmodeled jitter errors to plume pogo, was not successful. This was

especially true for cases of lower pogo oscillation frequencies and larger magnitudes. The results

described in Section 5.3.2.6 support the conclusion that the. more difficult conditions to estimate

are slower pogo frequencies and larger magnitudes of oscillation. Finally, analysis of the pogo

statistics did show that pogo errors are impacted significantly by phase errors as well as magnitude

estimation errors.

7.2.3 AFIT Elemental Filter Performance. This thesis successfully developed and

analyzed the desired single filter that combined the independent "FLIR" and "center-of-mass"

filters used in the previous three theses [8,9,14]. Chapter VI contains a detailed analysis of the

performance exhibited by the 9-state filter. The overall performance of the filter was not as good

as the performance demonstrated by the independent-filter configuration. It was originally

hypothesized that incorporation of pogo and all other states into a single filter, which utilized both

the FUR and low-energy-laser measurements, should yield better performance. The degradation

in performance, however, appears to reinforce some of the conclusions originally proposed by

Rizzo four years ago [40]. The degradation may be due to either poor estimatability of the

atmospheric jitter, interaction of the jitter model with the pogo states, or a combination of both.

Investigation of the jitter estimation showed that, unlike previous AFIT filters, the

temporally averaged standard deviation in actual jitter estimation errors did not vary significantly
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when taken immediately before the update (t+,, ), and inumediately after the update (t+ ).

However. the actual errors were of the same order as the jitter process uncertainty itself, indicating

that the filter was not estimating jitter any better than if the jitter model states were not included

in the filter. The difference in results between the MSOFE simulations and AFIT simulations (and

improved jitter results in the AFIT filter) lead to speculation that there still may be a problem with

how the jitter is modeled in the AFIT software.

Since the elemental filter was not studied under differing pogo conditions, conclusions of

performance sensitivity to pogo corresponding to the MSOFE analysi% were nct obtained. The

analysis of pogo estimation plots supported the conclusion drawn from the MSOFE analysis that

accurate pogo estimation was highly dependent on the pogo phase as well as magnitude. For tids

reason, the pogo magnitude and velocity to which the filter is initialized affect the phase error and

how quickly the filter recovers. Use of larger initial uncertainties and noise strengths in the filter

stucture for the pogo states would speed recovery of the filter, and then the steady state values

implemented in this simulation could be utilized for steady state tracking. Additionally, it is

hypothesized that the higher the pogo frequency, the more quickly the filter will recover. This

hypothesis is fully supported by the observation drawn from the MSOFE statistics that higher

frequency pogo is easier to estimate.

Some of the most fruitful conclusions associated with the elenii :ital filter are derived fi

analysis of the filter's estimation of : center-of-mas to centroid equilibrium point offset

distance. The performance is much poorer thau expected. especially considering that it should be

a constant, and it is derived directly from the low-energy laser offset measurement by simply

subtracting out the estimated pogo. Two major characteristics of the set error statistics, a large
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bias in the mean, and noisy estimation values, yielded a plethora of pc.teu)tinl explanations and a

veritable bounty of recommendations for future research topics.

The remainder of the detailed elementai . ta analysis was expended in a discussion of

the possible problems in the Fortran code indicated by the large offset bias error and noisy

measurements. The magnitude and direction of the bias were characteristic of the bias in the

rpeckle return measurement model, so the appropriateness of the Doppler measurement model as

implemented for this research is suspect. Additionally, the rapid changes in offset value are

caused by a heavy reliance on accurate low-energy laser measurements, when a frame-by-frame

aiiatysis of LEL measurement data revealed somewlhat less reliability then the programmed tuning

parameters. This reliability of the offset measurement may be a residual of a suboptimal

technique for interc. ,)ting the missile with the low-energy laser, either caused by poor sweep

geometry or poor geometry with respect to the tracking window FOV.

TI',, final analysis section of Chapter VI discussed several miscellaneous items dealing

with the software itself. The conclusions drawn in that section focus on upgrading the software

documentation and truth model to allow more reliable and realistic simulations for future

researchers.

7.3 Reconmmendations

This section concludes the thesis with a number of suggestions for future research topics.

Some of the advice is drawn directly from the performance analysis accomplished for this

research. This type of guidk-ice is intended to assist anyone wh, i.•tcids to continue from where

this research was termiinated. the other type of recommendations given near the end of this
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section are more general politers that are intended to contribute to the general pursuit of the

ballistic missile tracking problem. The Recommendations section is organized in a parallel fashion

to the preceding Conclusions section. As with the previous secti,,,, recommrendations have been

generalized in the interest of succinctness. The reader is referred to the main body of the text for

specifics.

7.3.1 Stochastic Observability. These tests were inconclusive chiefly because

numerical precision limitations. It would not be advisable to attempt them again unless a,,

alternate appr:)a £,, perhaps with different algorithms, software, and or hardware are made

available.

7.3.2 MSOFE Monte Carlo Analysis. The initial implementation of the ballistic filter

tracking mooels was time consuming, however many of the hurdles have been overcome. Thli

success of the MSOFE simulations indicates that it may be useful to continue its use to verify

independently and/or support the results gained from simulations in the AFIT software. The

original intent wa.s eventually to perform simulations in MSOFE under the identical conditions

as the A.IT simulations. This goal is stiU desirable. The MSOFE simaiations should either be

modified to reflect the current ARIT model, the ART model should be revised, or ideally some

middle ground should be sought based on direction from the sponsor.

If MSOFE research is to be pursued any further, the next major step in augmenting the

filter models would be to characterize the low-energy laser offset measurements and re-accomplish

the sensitivity analysis for compurison to the AFIT simulations. Ultimately, it may be possible

to utilize MSOFE to obtain approximate tuning parameters for the elemental filters.
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Since MSOFE is currently not capable of simulating a multiple model adaptive algorithm,

it cap only serve to verify the individual elemental filters out of the filter bank. If a shell enabling

MSOFE to be used in a MMAF simulation i., ever developed, however, or if some other well-

tested and documented filter simulation program is ever made available that has the capability to

perform MMAF simulations, it should be investigated. Such software development is currently

being pursued at AFIT.

7.3.3 AFIT Elemental Filter Research. The successful estimation of jitter using the

MSOFE models is contradictory to the findings from ,AFIT simulations. In addition, since

MSOFE (id not indicate any jitter/pogo interactions, it would be useful to implement a similar

series of tests using the AFIT software. Increase nodularity of the AIT software will make it

easier to accomplish simulations using different filter and truth models

Causes for the poor estimation accuracy of the offset state should be purmuedt. The results

of the Doppler model currently implemented should be compared to the results obtained by

Hernera 'o deteimine its appropriateness for this simulation. Once the Doppler measurement

model is verified to be properly utilized, an investigation should be accomplished to determine

the appropriateness of the laser sweep routine and the FLIR FOV geo.retrry in the presence of

pogo. An alternate laser sweep geometry and/or alternate FOV geometry should be investigated

to oetermine if improvement in the offset measurement is. feasible. Two simple suggestions are

simply to expand the sweep parameters (both angle rind distance) and to enlarge the effective

tracking window by either expanding its dimensions or implementing the DRFOV routine

developed by Rizzo [40]. Whatever approach is pursued, the laser sweep routine should be

restructured so thal it never goes into an endless loop.
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At this time, a parallel research effort toward more accurate tracking could be supported.

One branch would be to pursue the single filter model with states defined as in the elemental filter

developed in this thesis. The other viable approach is to continue the philosophy of the previous

research and intentionally to separate problem into two separate filters, each based on the typo of

measurement avai!able. Theoretically, the single filter Rpproach should be ideal, since all states

can interact with one another as they do in the reai world. However, since it is evident that the

offset state is corrupting the other states in the single filter approach, the pogo should be

incorporated into the two-filter scheme and its performance compared to that of the single filter.

The problems causing degraded filter pcrformance should be investigated prior to pursuing

final tuning of elemental filters for a MMAF. The initialization procedures of the truth and filter

models should be given special attention, since both the pogo initialization problem higlighted

in Section 6.2.4 and the initial velocity transient in Section 6.2.2 may be repaired by the same

software change. One possible avenue to puirsue is to investigate the template shifting and re-

acquisition routines to determine whether they need to be revised for tde new model.

7.3.4 General Software Upgrades. There are tnree major revisions to the softwa-e which

should be consideied. The first revision is considered by this researcher to be an absolute

necessity. The second revision is highly desirable and the third revision, the most challenging,

also allows for the highest potential contribution the general tracking problem.

The first revision addresses the fact that other errors in the software may be embedded

in the truth model or due to improper ,ign conventions in the FLIR plane y-axis. The entire code

should be scrutinized for u, ,,cessary or missing documentation or obsolete code. The internal

documentation should be brought up tc the present date, and some consideration should be given
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to a separate log or manual that contains specific hints not contained in the theses. As mentioned

before, incorporation of some the features of MSOPE to enhance modularity would also make the

code more comprehendible as well as more efficient to operate and debug.

The second revision involves modifying the simulation model so that the truth and filter

state vectors coincide. They don't have to be exactly the same, but fundamental states, such as

the target dynamics states, should define the same target in the same coordinate, system. Careful

consideration should be given to the enhanced correlation algorithm and associated template

generation. Revision of the controller, statistics, and plotting routines should be fairly

straightforward. If this revision is accomplished, the researcher should also seriously consider

simultaneously modifying the controller to center the FOV on the missile hardbody and driving

the controller with the newly defined target dynamics states for the center-of-mas.s.

The third revision is the most difficult but holds the most promise for flexibility and

power in fiuture research projects. Until now, the AFIT simulations have been coded from scratch

in Fortran. Because of its longevity and widespread use, a substandal library of verified and

mstworthy routines has been developed. However, the basic approach is still limited by the

extremely labor-intensive requirement of manual coding, debugging, statistics calculations,

plotting, ad infinitum. The advance of technology in both software and hardware has greatly

simplified these time-consarring and error-prone tasks. It would be highly beneficial if the

simulation could be reaccomplished in an alternate software package. One potential candidate

would be Mathematica [52]. Mathermatica is not only a well-integrated package that contains

much more powerful mathematical manipulations and programming tools. but it would enable

researchers to accomplish all the diverse operations performed for this thesis within a single
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package. There would be no requirement for a separate plotting routine or manually prograrmming

in statistics equations or even keeping track of matrix indices. Either discrete or continuous time

models could be programmezd directly in state-space form and analyzed symbolically for

observability, controllability, etc; and statistics and plots could be created without any importing

or exporting of data. As noted at the beginning ot this "soapbox" lectue, such a major revision

would be extremely challenging and wou.d require many hours of verification and comparison to

the current simulations to ensure correct operation. T'his writer holds the conviction that, in the

long run, this recommendation bears the highest potential for advancement of the tracking problem

and learning experience for future AFIT graduate students.
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This Appendix explains hiow the statistics listed in t1,ec thesis and plotted in the succeeding

appendices were determined. The equations for the statistics and the data used Io plot them are

di1scussed.
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The performance of the Kalman filters used in this thesis Is evaluate. using multiple

Monte Carlo runs (five for the AFIT simulations and 10 for MSOFE simulations). A Monte Carlo

analysis involves collezting statistical information generated from simulating samples of stochastic

processes [211. Ten Monte. Carlo runs are generally coasiderod sufficient to converge to the actual

statistics that would result from an infinite number of ruas [9,24]. After collecting N samples of

truth model and filter model data for each of N Mon'te Carlo runs, the uue error statistics c2n be

approximated by computing the sample mean error and error varince for the N runs. The sample

mean error and error variance are computed by:

1 N-f (A.l1)

2(t1) = -] I (t - E )(t) W- E'(t)

where

E(t) - sample mean of the e&-or of interest at time t,

o2(tj) = sample error variance at time t,

A~h.,~(t1) = truth model value of the variable of interest at time t: during
simulation n

'jlt.,,,(t• ) = filter estimate of the variable of interest at time t: during
simulation n

N = number of Monte. Carlo runs

The statist-s are calculated before, the measurement update at (:t) and after the update at

(t:). In the performance plots displayed in Appendices B through H, the statistics at each instant

in time art plotted together; that is, the satistics before ano q.fter the measmrement cpdate are

plotted on the same time axis. They are reduced further to obtain average scalar values over the

time, of the rurt, by temporally averaging the mean error and standard deviation (a) time histories

from two seconas into the simnulation until the end. The first two seconds arcm not ised to ensure
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that the data reflects only steady state performance [91. The errors are measured in units of pixels,

where a pixel is 15 prad on a side (approximamely 3 meters at a distance of 200 km for the

MSCFE analysis anl 30 meters at a distance of 2,000 k. for the elemental filter simulations).
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Whs appendix displays aai example of me pt-formanco plots referenced throughont Mie thesis. An
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Two different types of data plots a- presented in Appendices C through F to assess the

porformance of the center-of-mass filters employed in this thesis. The first type of plot, the state

comparison plot shown in Figure B. 1(a), provides a direct comparison of the filter estimated wad

true value of the state. For these plots, the ensemble average (over N Monte Carlo runs) of the

true value of the. state is shown as a solid line.. The ensemble average value of the filter estimate

at any instant in time is shown as a dashed line.

The seconid typs, of plot, the error statistics piot shown in Figure B.1(b), provides a

memaire of the tracking peformance. The plot shows the mean filter error, averaged over the N

Monte Carlo runs at each instant in time, for a state or variable of interest. In addition, this type

of plot displays the actual lo (standard deviation) centered on the mean, or mean * la curves.

They are the Lwo dotted lines that surround the mean curves. All the filters for this thesis were

designed to assume zero mean errors in all states, so the fliter computed estimate of standard

deviation is plotted relative to the abscissa. The legend for the symbology in the error statistics

plots is shown here.

Mean Enor

M ean Error * lo ........................................

zero * Filter Compud la ........-...................

B-2



.6.......... filter

, 2 
.. .. . .. ...... .... .... .

- .4 trt

.9<

.6.

* ! a aI

.3I i . -- .

. . /. . .

€ i ] I t I %.. 
.. . . .....

S.. . . . ... ... i . .. .. .. I . ... .I.... ... .... ... ... . ... • . ... .... . . .. . .. . ... .......... .... ... . ...... ... ... .... ... . ..

o -

0 1 2 4 5 6 7
time (seconds)

(a) FILTER vs TRUE STATE

.B-

i ... . ..
.ati .. . . . . - . . . . . . .i . . . . . . -. !. . . . . . . . .: . . . . . . . . . . . . . . . . . . . .. . .

. ', a',:;.

-. 6 \ ..... . . . ia. ...... .. , ' " I" l

o. , . . , .,- . . .. • 1 2.. . .. . ... ..4 - 5... ...... . 6 7.. . . . . .... . .

SI- IX h 'gur 8.1 ,'~m~ 0'\V Str P ....t an .. ...... ' t,....s....... P ... .... t"

rj -.• I " : .. . .. •' , ,i,..... ..... '/ .. .. •.... .• ,. : ... .. ..... '.". . ..3-. . . ..3



........d.....C
..SO J2 .........f..... A f deI

..s...... ....a U.p d....

This ~ ~ ~ W I Apen, cotisteavrg tts nzro tdltcpos o h SF

simulations~~~~~~~~~~~~~........ litdi...e52.Dt....to n yiblg epce nth w yeso lt

stiThis Apedoronan the avelter estiate. The error' statistics plots foreen the ero enadman ± I

stanidaird deviation values in pixels (or pixels/second for velor 'Y). of the errors between the filtei'-

estitmatsed and true state.

C-1



5 0 0 0 f - -- -

4000 ...

3 0 0 0 ............ I .....-

200 -..................tru th ....

-- filtpr

..... .. erro~r

0

10oco .. L .. L.. L Lh. LL ...

0 1 2 3 4 5 6 7 8 9 10
rie

()X POSITION -Fi, er ,linear

.8- -- --- -- -- --

.4 IV..

.... . . .. .
0. .

0 1 24 7 8 9 1

(b)X OSJTIN SATSTCS Filter #2, linear
F~igure. C. I Similation f~2, 0=60C, X-Posicion



10001

- 1 0 0 0 ......... .............. ... .

~ -30 I ___truth

-------------------- --------- fle

--- error

0 1 2 3 4 5 6 7 a 9 10
timie

(a) Y POSITION - Filter #2, linear

.6 ~ ~ ......------ .......- -_ _ _--

.4.-

w 0

I I j I . ...

0-. 1/ 2 . 5 61

time
(b') Y POSITION STATISTICS - Filter #2, linear

Figure C2.2 Slimulation #2. 0 = 600, Y-Position

C2-3



451.....

450. .. .. ...... ....... ............. ...........- - -.... ....... I ......

450.6 . , . ..... ... ....

4,8 ---, ,-- ........, ...

4 4 5 06 .... .. . .. .. . .... . . .. ....... • .! .:...... ..... .... .... .. : • . . . . .. . . . . . . .. ..,, . ,

*. f k ' "' . ..,

4 4 . . . ... .. . . ..'. . •. ... . .. . . . . .. . .I. .------ ------ -.. . . . . .. . . . . . . . . . . .

4 5 0 1. :' ' • ' . I "', ' .", . . .9 , , : 'i: .$ 9 !

450.2tY< *

4

,1 1 9' ' '

S. .. .. . ,.. . .. , ,..... .'. ....... .• . . . . . ............ ---,- ---- --- --- ----.. ..

2 ..45(J .. .\ .... ... ... .... ..... .. .. - - -

4 9 ......... : ..... . LL , 4, -J .... ..... ... .... . . . .. 4 L .....
4 9 ..... --------- filter

0 1 2 3 4 5 6 7 8 9 10
time

(a) X VELOCITY - Filter #2, linear

C-4

x i--..1 . .. .i. . . . . . . . . . . . .. . . . . .y . .. . . . . . . . . . . . . . . . . . . . . .

-3 A: '. . . ...; ' , ,., ; ;,. ,.• , '". .,. .

o 1 2 03- 4", ."5 .6-,, 7 8 9 10•• , '",;"'.a: '. €:,' ; '" ':"I :',".•. . ':", '" :"

tim
(b) .X VELOCITY.....STATIS..... CS -............ F ilte .............2 , ........ "ear .....

Figure .3 Simuation #, 0 = 5l(,XVlcy

C-4



-777.8

- .7 7 8 ..... ... ...... .....
-7 7 8. ; . ..... . ,.. .. . . . ....... .... , ..... . . . . . . . . . ... ... . . ... .... .. -- ------... .. . .. . ...... .. .. ..

-778.2 ..... . .....L h ''i ;; !

--------------
o... -778.8 . .-

"A9

.779. ------'I

-7 . --- --- ..... , . ... . .... . .... .. .. -4 - -- ... ........ , ..... . •....... .. .. .... .. . .......

- 778.4 .. ....... .. ......- -" ------ - .. .... tru th -
- 7 7 9 .6 ..,-.........-.. .. ... -........... f lr.......... I- ..........

-779. 8
o 1 2 3 4 5 a 7 8 9 .10

time
(a) Y VELOCITY - Filter #2, linear

5

-7 7 9 .--- -- -- --- -- -- --..--.. . . . .. ....... ..• ... .... L .. ....... ........ .. .. .. ... .. ..• : • , . . .

0 4 9----

04, .!, . 9 , .

3-. .... .... .............. ..- -----

..... . ...... . .. . ........ .. . ...... ...... ± --------- -• I. . . - --f i-- -- --- -

O 2 3 4 5 6 7 8 9 10

time
(b) Y VELOCITY STATISTICS - Filter #2, linear

Figure C.4 Simulation #2, 0 = 600, Y-Velocicy

C-5



4000

3 0 0 0 1 ------:---- --------------...

-14 200A-4-ruth ----

filtor

o 1 2 3 4 5 6 7 8 y 10
time

(a) X POSITION - Filter #4, linear

.44

.2 .... *- . -- ---

-.------ -

0 1 2 3 4 5 6 7 8 9 10
time

(b) X POSITION STATISTICS -- Filter #4, linear
Figute C ., Sitnulaficn #44 0 = 601, X-Position

C-6



1000

-00

-7 0 ..... .. ...
-. 1 00 0 ..4......L . ..L4 i...L.. .....~. .. .L.L .. 4........ ....- ................

2 0 0 .. . . . . .. . . .... ---. - --- - ---- -- -- -

3 0 0 0................; ------------ -......

(b) POITIO STTISTCS Filer 4 inea 'r

-707



450,3

fl 4 -5 0 .1 5 ............. ....... ... ............... .......

4 5 0 .1 ........ ..... ... ... .......... ... ------ N ....

IIM

CA 450.05.... .... ..... p

4 50 .1 ~ ------------ - -... .......... ...I....

-~truth

.... filteir

0 1 2 3 4 5 6 7 8 9 10
time

(a) X VELOCITY - Filter #4, linear
.4

.3.... ...... .................... ;............... ...........

--- -- ------ - .......................... .

4'Ve

o ON
--.- -- -- -- ---

---.. --------.-.---------.---------. ------------. ... ..........

0 t 2 3 4 5 6 7 a 9 10
time

(b) X VELOCITY STATISTICS - Filter #4, linear
Figure C.7 Sirnuitstion #4, 0 =6O0, X-Velocity

0.8



- 7 7 8 .9 2 ---------- ---...... ...........

-7M894
A71 . ... ......

-778.96

CL -- 778.98 ~ hi

- 7 7 9.0 ....... ..............L------...

- 7 7 9 .0 4 ...... ....I.......I...... 9-- ---

- 7 7 9 .0 6 --- --------- ------ ------ ......---- -- ---- filte r -----

-779.08 .... ~-~ ~______
0..1.2...4. .......8.. 10

timine
(a) Y VELOCITY - Filter #4, linear

.4

.2 '. '-'- -. ..........----...........
. 2 .. . . . . .. . . . ... .. .. .. .. .. . . .. .. . . ... . . . .

0

-V.,

-. 44

0 1 2 3 4 5 6 7 8 9 10
time

(b) Y VELOCITY STATISTICS - Filter #4, linear
Figure C.8 Simulation #4, 0 = 60O Y-Velocitv

C-9



.4 ... .... tru~h

. .. .. ..

04 0V

.2e
-------- ....

-.3

-.4

0 1 2 3 4 5 6 7 8 9 10
time

(a) X JITTER -Filter #4, linear

.6-

M .2

04

-. 21

I:Is

-.6 .----......

0 1 2 3 4 5 6 7 8 9 10

time

(b) X JITTER STATISTICS - Filter #4, linear
Figure C.9 Simnulation #4, 0 =60, X-Atmnospheric Jitter

C-10



-~trutjh

..... fil1tqr

.3.. .. --- --.... ... ....... ... .... ...

.2 .4 -- --- -------- ---------
..... ... ..

0 1 2 3 4 5 6 7 8 9 10
time

(P.) Y JITTER - Filter #4, linear

.4

-. 2

I~~~~ A ~ ...

0 1 2 3 4 6 6 7 8 9 10
time

(b) Y JITTER STATISTICS - Filter #4, linear

Figure C. 10 Simulation #4, 0 =600, Y-Atmospheric Jitter

C-1I



5000

*~2000~filtor

........errqr

-1000. . . .. .- L.A

.25 ~time 1

(a) X POSITION - Filter #6, linear

.25.....

. .5 ...... ...... ------ .....
.21 - --- - .... ---- -1-------.... ----

- .0 5 .. .... ... . L .L . ...... .. ...... ---- . ............ .... .. I .. .... ..

0-1



0

- 1 0 0 0 -- --- L . ..... . ...... .. . . . .. . .. . . .. .. .. . ... ...... II-- -- ...... . 4 .......

t ~ 3 0 0 0 ------ --- --- 1--.. --------- 4...... --- .......... .....
N - truth

.. fil r

-.5000 ..... .N.. ......
~error

- 6 0 0 0 ...... .. ... ....... ...... ----- ... ....

-7000

0 1 2 3 4 5 6 7 a 9 10
time

(a) Y POSITION - Filter #6, linear
.25-

.2 ----

.Vi L
.1.................................

Al.

4 0

-. 05

0 1 2 3 4 5 8 7 a 9 10
time

(b) Y POSITION STATISTICS - Filter #6, linear
Figure C.12 Siratlation K6 0 = 601, Y-Position

C-13



450.35

450.2 ..... ...

450.15 ... . ------ ....

L. 450.15 ----- -.... ........

X 450.0

450 ~truth

4.4 .5 --- ------

449.8 .. ....- W LL±

0 1 2 3 4 5 6 7 a8 10
time

(a) X VELOCITY - Filter #B, linear
.25

0 ZI
~<-.05

- . 2- - , .. . . .. .. .. . - - --- - - -

2 5 '

0 1 2 3 4 5 6 7 8 9 10
time

(b) X VELOCITY STATISTICS - Filter #6, linear
Figure C. 13 Simulation #f, (3 = 60O, X-Velocity

C- 14



- 7 7 8 . 84 .....- ------.. ... ------ !...... ........

-778.86 [....... --------

-7783.02 . ......

-7*78.94 --- -----
-~-778.92

.. ... ..L -- --- --
S- 78.94 -------

- 7 7. 96 ... .. ............... ----- ...... It- u h . ..

- 7 7 9 . 0 2 -- --- ---- ---- -- .. .. .......- -- -

-779.024 v------fle
0 1 2 3 4 5 8 7 8 9 10

time
(a) Y VELOCITY - Filter #6, linear

.3 _ __ _ _ __ __ _

CLI

.2f

0 1 2 3 4 5 6 7 8 9 10
time

(b) Y VELOCITY STATISTICS - Filter #G, linear
Figure C. 14 Simulation #6, 0 = 600 Y-VeJloeity

C-15



.04[

~' .04~ r .. .

-. 0

O 1 2 3 4 5 63 7 8 9 10
time

(a) OGO0 OFFSET Filter #6, linear

.25

----------

_ 0

-.05 V
-----------

0 1 2 3 4 6 7 9 A
..... .......------- ----- ------t i- ---m e- -- I .... .

(b)5 ...G .OFFSET-- ST T ST C ... il.e. #. linear ----. ..... -----
Figuie ~ ~ ~ ~ ~ ~ -- C.15-------#,0 O, og ff

.2 -- -- ---- -- -- -- --- -- -- -- --------- ---6-- -- - ----



6000 -

4000 ....

.- 2000 ---- .... ... r

filbor

I........ errQr
0 1

-1000 K___
0 i 2 3 4 5 6 7 8 9 10

time
(a) X POSITION - Filter #7, linear

~ .2 ...... ~.------

. , . ..... .

.4

.46

0 1 2 3 4 5 6 7 a 9 10

time
(b) X POSITION STATISTICS - Filter #7. linc- r

Figure C. 16 Simulation #7, -05 500, X-Position

C- 17



1030 ,,

100

-2000 .... ......

3 0 0 ------ -f .... . ....... ----

..... filt0
- 5 0 0 0_ -- ------ ..... .. ._._.. .... .. .... _..._.. . . ... . . .

(a)~~...... Y POITO -Fltr#7 in

60 0 ....... -- ---- -- 7 - .... .. . .... ..... .. .... ... ...

-7000 ~~~~~~~~. . ........ ..... -------....... ... . ........

-80

-. 1 6 79 1

(a) Y POITO - ite 7lna
I. . . . . ....... .....

0 ... . ......... ~~
0. 1-2----6-7- 1

ti -------
4b Y-OSTINSTTITIS--i-e-#- ina

Figur C --- Siml- io #7,-- ...... -P sii

f-1



451-

450.6 .....-...

5.9v.

4 5 . . . .. ... ... ..... ........ 5;

449.8 4, t4 I
I.... h* '

4 4 . t9 . . . . 5

0 1 2 3 4 5 6 7 a 9 10
timrne

(a) X VELOCITY - Fil~er #7, linear
2-

.. .......... ... 5. ..... .. ..... .. ...------

.. .. . ... .. . ... ... . .r- - - -- - - -- -

_ _4

-. .. .. .. ..1

time
(b) X VELOCITY STATISTICS -- Filter #7, lirear

Figure C. 18 Siniu~ation #7, 0 = 600, X-Velocity

c- 19



-778.2 
--

-778.4

-7 8. ~.*.rr -............ .........

-779 ~.2 ......:..v.......t p',*te......11

V.V

-7 7 9 ..... ....~ ... L.~ & 4 . J ~

o7 . ....... 2 .... 4...6.7....10

-7 9 4..... . .....

1~ truth-.

-- 7 .0 .7..

o 1 2 3 4 5 6 7 8 9 10
time

(b ) Y VELOCITY SAITC - Filter #7. linear

C22



4000

.....filter

........error

0 t 2 3 4 5 6 7 8 9 10
ti me

(a) X POSITION -Filter #8, linear, Pogo Cond 4

.4 ---- -- -- ......

---. -- - --- . .

4 0

- 2 ----- ... ..... ........ --- ..... .

-. 4 ....... ,-.., 2

0 1 2 3 4 5 6 7 8 9 10
time

(b) X POSITION STATISTICS - Filter #8, linear, Pogo Cond 4
Figure C.20 Simulation #8. 0 =600, X-Positiofl

C-21



1000

0. . .. . . .. . . . . . . . .. . . .. . .. .. . . . .

-1000 -----

2 - 0 0 60 ... .... . ......... .. ......... ..... ...................

-5000 ... .. ... ...
....... errqr

-7000

0 1 2 3 4 5 6 7 8 9 10
time

(a) Y POSITION -Filter #8, linear, Pogo Cond 4

............. ...............................-.. . . . . . . . . .

.4 t -

.. ... . .. . . .. . ..

0 -

~ .2

0 1 2 3 4 5 6 7 8 9 10

time
(b) Y POSITION STATISTICS -Filter #8, linear, Pogo Cond 4

Figure C.21 Simulation #8, 0 = 60', Y-Positiomi

C-22



450.8

441

450.[. , 4

4 4 9 .--- ....... '

.............. ** ....... *~ .......... ~ ... 4 I4............4---

449.4

0~ 1~ 2 3: 4 8 9 1

...... ---- -4 ---------t'. .... ....... .... j

.4 .4 .. .. .... --- --- --

. . . . . ........... ------

0 .1 2 4 5 6 7 ,9 1

(b) X4 VEOCT STTSIS Fltr#,lnar ooCn

Fiur C.2Smlto - , 0 0 , X-Ve4.:.

4, 4*4 ~C-23t~



-778.4

[ I , it , *t

A7 . . . J ..P..i..... ..... 6'. 4

-779. ....... - .. .. . .. FI

a4794I- ~.'-"- truth

filter

-779.6 .L.L.L.LLLJ.t.I .L4...........L...L.JL.LJ....I..LJA.Lo 1 2 3 4 5 6 7 8 9 10
time

(a) Y VELOCITY -Filter #8. linear, Pogo Cond 4

-- --- -- - ..... ... .. ..... .....

.. .... ... .. .. . ...

... ..... ---- .. .

.3

o 1 2 3 4 5 6 7 8 9 10
time

(b) Y VELOCITY STATISTICS -Filter #8, linear, Pago Cond 4
Figure G.23 Simulation #8, 8 = 600, Y-Velociuy

C-24



truh

.2 ---- -- ---- -- + ir .... ...... ...................

..... . . ~ -- 4-.......................

06 1 6 7 a 9 1

(a) OG OFSE Fitr#,lnar6ooCn

.6.

4'4

* ~~~ ~ ~ ~~ ~ ~ ~~ ~~ ...L ... L..L...A....L ~ J . L.~ L L

- . ----- -3..... 4 ........ 1

.. 1

0 1 2 3 4 6 7 19 1

(b POOOFE4TTSIS-Fltr#,lna.Pg6ol

FiueC20iuain#,0=6' ooOfe

- ----- C-25



5000

3 0 0 0 --- -- -- ... ... --- ---- -- ---- ---- -- . .. . ... .... - ----... ...

P4 2000 -----

-1 UU AA1 . ~ ... L~. ~L.Ji. L ~ L..L .~. ..... . errqr

0 1 2 3 4 5 c 7 8 9 10
time

(a) X POSITION - Filter #9, linear

. - - ~ - - . - - - ----------- __

---. j~ -- - - - - . . . - - -

0__

.2~ I ---------

0 1 2 3 4 5 6 7 8 9 10
time

(b) X POSITION STATISTICS -- Filter #Q, linear
Figure C.25 Simulation #9, 0 = 600. X-Position

C-26



1000

. .... ... .. • . .. . . . . . . . . . .. . . . . . .. . . . . ...L ............. . ........ .... ,.. .......... - -----------.
-- -- -- - ---2000 ..-......... ..........................------------.....-'2000 "4-_L_.....

{ -- 30 00 ...... .......... ...... ..... i...... ------- --------- ........ .......... -- ................. ------- ----------......---"N 44-.. truth

------ f1lttirS-0 0 0 0 ---------- -- -- -----... . .. . .. . i. . . . . .. . . . . . . . ......... . .... ....... .......... :............ .... ........ ----------------------.... ........ arrflte

__...... . .. . . . . . . . .. . . . .. . .. ....... .. . . . . L ... . . . . . . .....

0 1 2 3 4 5 6 7 8 9 10
time

(a) Y POSITION - Filter #9, linear

• ...3 -•:: &-T • ---------- --- -- --- •2 ' / ; • -• : : •'- -- -- ---- - ........ ........ .........'T-"••'

~~~~~~~~ ..., ... ,-: : , , , ,.. , , . .. .... ... .--- -• -- --- - -- - .--r, y-2 .A < t
I" . :, .! i :.,: ! - 2" 4•. '4• i.

O k -,. .

--------. .,. . - .. . ...... ..2 - . ...,,V ...... . .... . . .. .. . ...¢ ... .. .. . .. ..... .:; : .---- --- -- --- -- --- --

........ . , ; ". . . , , -,-,- ----,-

V- 
* 

X 

2f. . . . . . . . . 2.. . . . . .- - -- - - -- -- -

- .. . . ./, . . A
* " t A '

4 J, I J ! L t.4 ,[..Im L I I L & L [I J J 110

O 1 2 3 4 5 6 7 8 9 10
time

(b) Y POSITION STATISTICS - Filter #9, linear

Figure C.26 Simulation #9, U =- 60', Y-Position

C-27



450.3 ........

4 5 0 .2 5 ............... .... -- --------- ........... ./

4 5 0 .2 -- -- ------------ ........ .. ... ....- ....I- --- ..... ...

. 4 5 0 1 .. .... .. .. .. ..... .... i. .... ..

4 550 . 1 -------.... ...... . ... .---- ...... I....

450 .05 -------... .. . ......-------

~-~ trutih
4 5 0 -- --- -.. ... ... ..... .. ... .... .. . .--- ------ --- --

0 1 2 3 4 5 6 7 8 9 10
time

(a) X VELOCITY - Filter #9, linear
.3

- . . .......... .... ...... ......

0 _0

-- --- --- - -- --- -

------- 4--- ----------- 1'jL

(b) X VELOCITY STATISTICS -e Fite #9 ina
Figure C.27 Simulation #9, 8 = 600, X-Velocity

C-28



-778.86

-778.89. ...

-778.92

~ 7 7 8 .9 8 ---- ........ r---- ....

- 7 7 9 .0 4 --- --- - ... ..... ---- -- ------- ----- - ---- -.. ..... .

Struth

-779.1~______ ~4

time
(a) Y VELOCITY - Filter #9, linear

.4

1. . .. . ----. .. . .. ..

04

.................................-,-.).........

- .2.. ... ---

.- 4 --- --- L -----___________ --------- ---------. . -- ---- j_

0 1 2 3 4 5 6 7 8 9 10
ftime

(b) Y VELOCITY STATISTICS - Filter #9, linear
Figure C.28 Simulation #9, 0 =601, Y-Velocity

C-29



.... fi4.cqr
-~.3

.2 ...1.

Ind1

0J

-5
0 1 2 3 4 5 6 7 8 9 10

time
(a) X JITTER -Filter #9. linear

.6 -------.... . ..... ... .............

.2

I4 0

-.2

- 6 --- ---- - ...- -- --- --- --

.6 -- ------ ---- ----

0 1 2 3 4 5 6 7 8 9 10
timrne

(b) X JITTER STATISTICS -Filter #9, linear
Figuve C.29 Simulation #9, 6 60, X Atmosplieric Jitter

C-30



[7 : . Itruth

-.... I liter

0I

.... .....1

; 111 6 7 a 91

LIL

.2 1
.4

.6

0 1 2 3 4 5 6 7 8 9 10
time

(a) Y J ITTER SAITC - Filter #9, linear

1-3



5000

4 0 0 0 .. ... . .. .. ... --- ---------

.~ 2000 ....................... truth' ....

---- filtipr

-1000

0 1 2 3 4 5 6 7 8 9 10
time

(a), X POSITION -Filter #10, Pogo Cond 4
.3 -

04

-.2 .... ---.

- .4 . . . . . . . . . . . . .L

t 1 2 3 4 5 6 7 8 9 10
time

(b) X Pt. ITION STATISTICS -, Filter #10, Pogo Cond 4
Figure C.31 Simulation #10, 0 =60', X-Positlon

C-32



1000 ...

- 1 0 0 0 ... .... ...... ......

_ - 2 0 0 0 ....... ........-----.--......

~ 3 000 ------ ... .. ....
'N. - ru th

E6 -4000 ...... ----- -......

'-5C0Q
.... errpr I

-7000

0 1 2 3 4 5 8 7 8 9 10
time~

(a) Y POSITION -Filter #10, Pogo Cond 4
.4

... .. ... . .......

x"

.2 K... ... ... ..

. . . . . . ........-----

- --- -- --- -- - - - - -- - - . . . ..

-. 33



450.3

450.2 5 ............ ......

450.15.....

450.05...... ----- ......

AV .. . . . ..1 . .. . . .

4 4 9. . L. L ....... .... ........ ....... . ..- ---- - ... .. . ...... .. ..

0 1 2 3 4 5 6 7 8 9 10
time

(a) X VELOCITY -Filter # 10, Pogo Corid 4
.3 -

--- -,-- -------

-- --- - -- ----

02 .2.3.4...6.... 9 1

time
(b) X VELOCITY STATISTICS - Filter #10, Pogo Cond 4

Figure C.33 Simulation #10, E) = 600,O X-Velocity

C-34



-778.88

-778.9 1, 4 .. .

-778.94 ...

- 7 7 .9 ... ..... 4... .. 4

S-778.98 ..... ....... .....

-- 77 -- -----

- 7 7 9 .0 2 --- ... ........ .. ........ ...... .....

-77 0.04 ---- ..... ... ------------- tru th ...
-779.06 ---- ........If l i ----

- 779.08 ... .rli

0 1 2 3 4 5 8 7 8 9 10
time

(a) Y VELOCITY - Fi.lter #10, Pogo Cond 4

.2 ...........

.......... . .. . .. ... .. .

0

-.4

0 1 2 3 4 5 6 7 8 9 10

time
(b) Y VELOCITY STATISTICS - Filter # 10, Pogo Cond 4

Figure C.34 Simulation #10, 0 = 600, Y-velocity

C-35



--- itrut~h
.4. .... ..... ..... .... .....

0 0

itLA.

' S .. .. . ..- .. . .

0 1I 2 .78 9 1

.4 
4

.2

0~j 14 2ý 3 7 8 9 1

time
(a) X JITTER SAITC - Filter # 10, Pogo Cond 4

Fiur C.35 Si___o 1, 0,XAnoshrcJte

C-)



U. trutjh

..... UtU

9 . 2 ------- . ... ..

>1l

0 1. 2 7 a 9 1

(a) Y JITTER - Filter #10, Pogo Coxid 4

.8- ----- --------- --- ---

.2

.4 -- i-40

0 1 2 3 4 5 6 7 8 9 10
time

(b) Y OJITrER STATISTICS - Filter #10, Pogo Cond 4
Figulre C.36 Simulafion #f10, 6 60', Y-Atmnospheric Jitter

C-37



* L..~trut~h

.. ) a0 * ..... ..... ...........

-04

- .0 4 L ........... .... ------- .... L........ ... ...... ------- ........ ... L... ... .. .. . ... ~... .......

0 1 2 3 4 5 6 7 8 9 10
time

(a) POGO OFFSET -Filter #10, Pogo Cond 4
.8

0

-- --- - .. ........ ------I .. ..... ---- -1 -- ------ --
.2

---4- ---- -------.

0 1 2 3 4 5 6 7 8 9 10
time

(b) POGO OFFSET STATISTICS - Filter #10, Pogo Cond 4
Figure C.37 Simulation #10, 0 =60', Pogo Offset

C-38



This appendix contains the average states and eror statistic plots for the MSOFE

simulation #10 using a general angle model (nonlinear measurement update) for the different

plume pogo characteristics listed in Table 5.3. Data collection and symbology depicted in the. two

types of plots contained in this appendix are explainend in Appendices A and B. The state

comparison plots show the ensemble average truth state over the 10 Mona-e Carlo runs compared

to the same statistic for the filter estimate. The. error statistics plots) represent the error mean and

rnesn ±1 standard deviation values in pixels of the errors between the filter-estimated and true

state.
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This appene~ix contains the averag.,e state and error statistics plots of the nine-state AFTIT

elemental filter. The data depicted in the two types of plots in this appendix are explained ill

Appendices A and B. The state comparison plots show the ensemble average truth state over the

5 Monte Carlo runs compared to the same statistic for the. filter estimate. The error statistics plots

reprtserit the error mean and mean ±1 standard deviation values in pixels (or pixe~sse~orid for

velocity and pogn velocity), of the errors be.tween the filter estimated and true state.
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